Author: Rosenzweig, J.B.
Paper Title Page
TUXGBE3 Status of Plasma-Based Experiments at the SPARC_LAB Test Facility 603
 
  • E. Chiadroni, D. Alesini, M.P. Anania, M. Bellaveglia, A. Biagioni, F.G. Bisesto, E. Brentegani, F. Cardelli, G. Costa, M. Croia, D. Di Giovenale, G. Di Pirro, M. Ferrario, F. Filippi, A. Gallo, A. Giribono, A. Marocchino, L. Piersanti, R. Pompili, S. Romeo, J. Scifo, V. Shpakov, A. Stella, C. Vaccarezza, F. Villa
    INFN/LNF, Frascati (Roma), Italy
  • A. Cianchi
    INFN-Roma II, Roma, Italy
  • M. Marongiu, A. Mostacci
    Sapienza University of Rome, Rome, Italy
  • J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • A.R. Rossi
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • A. Zigler
    The Hebrew University of Jerusalem, The Racah Institute of Physics, Jerusalem, Israel
 
  The current activity of the SPARC LAB test-facility is focused on the realization of plasma-based acceleration experiments with the aim to provide accelerating field of the order of several GV/m while maintaining the overall quality (in terms of energy spread and emittance) of the accelerated electron bunch. The current status of such an activity is presented, together with results related to the applicability of plasmas as focusing lenses in view of a complete plasma-based focusing, accelerating and extraction system.  
slides icon Slides TUXGBE3 [10.258 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUXGBE3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEYGBD4
Inverse Free-Electron-Laser Based Inverse Compton Scattering: an All-Optical 5th Generation Light Source  
 
  • J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
 
  Compact monochromatic X-ray sources based on very high field acceleration and very short period undulators may revolutionize diverse advanced X-ray applications ranging from novel X-ray therapy techniques to active interrogation of materials, by making them accessible in cost and size. Such compactness may be obtained by an all-optical approach, which employs a laser-driven high gradient accelerator based on inverse free electron laser (IFEL), followed by an inverse Compton scattering (ICS) IP, a scheme where a laser is used as an undulator. We discuss experimental progress in understanding high-intensity effects in ICS, as well as the development of an efficient IFEL. We then describe the proof-of-principle of an all-optical IFEL-based system , where a TW-class CO2 laser pulse is split in two, with half used to accelerate a high quality electron beam up to 84 MeV through the IFEL interaction, and the other half acts as an electromagnetic undulator to generate up to 13 keV X-rays via ICS. These results demonstrate the feasibility of this scheme, which can be joined with other techniques such as laser recirculation to yield very compact, high brilliance, keV to MeV photon sources.  
slides icon Slides WEYGBD4 [24.592 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL009 A TM01 Mode Launcher With Quadrupole Field Components Cancellation for High Brightness Applications 3631
 
  • G. Castorina
    INFN-Roma1, Rome, Italy
  • A.D. Cahill, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • F. Cardelli, G. Franzini, A. Marcelli, B. Spataro
    INFN/LNF, Frascati (Roma), Italy
  • L. Celona, S. Gammino, G. Torrisi
    INFN/LNS, Catania, Italy
  • V.A. Dolgashev
    SLAC, Menlo Park, California, USA
  • L. Ficcadenti
    Rome University La Sapienza, Roma, Italy
  • M. Migliorati, A. Mostacci, L. Palumbo
    Sapienza University of Rome, Rome, Italy
  • G. Sorbello
    University of Catania, Catania, Italy
 
  The R&D of high gradient radiofrequency (RF) devices is aimed to develop innovative accelerating structures based on new manufacturing techniques and materials in order to construct devices operating with the highest accelerating gradient. Recent studies have shown a large increase in the maximum sustained RF surface electric fields in copper structures operating at cryogenic temperatures. These novel approaches allow significant performance improvements of RF photoinjectors. Indeed the operation at high surface fields results in considerable increase of electron beam brilliance. This increased brilliance requires high field quality in the RF photoinjector and specifically in its power coupler. In this work we present a novel power coupler for the RF photoinjector. The coupler is a compact X-band TM01 mode launcher with a fourfold symmetry which minimized both the dipole and the quadrupole RF components.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)