Author: Rojatti, E.
Paper Title Page
MOPML021 Shorter Treatment Time by Intensity Modulation with a Betatron Core Extraction 439
 
  • M. G. Pullia, E. Bressi, G.M.A. Calvi, M. Donetti, L. Falbo, S. Foglio, V. Lante, A. Parravicini, C. Priano, E. Rojatti, S. Savazzi, C. Viviani
    CNAO Foundation, Milan, Italy
 
  The CNAO (National Center for Oncological Hadrontherapy) main accelerator is a synchrotron capable to accelerate carbon ions up to 400 MeV/u and protons up to 250 MeV. Three treatment rooms are available and are equipped with horizontal beam lines; one of the treatment rooms also features a vertical treatment line to allow additional treatment ports. All of the beamlines are equipped with an active beam scanning system for dose delivery. With such a dose distribution technique, particles are sent to different depths by changing the energy from the synchrotron and are moved transversally by means of two scanning magnets. The number of particles to be deposited in each position varies strongly within the same iso-energetic layer. Part of the dose needed in a given position is in fact delivered by particles directed to deeper layers. In order to maintain the required precision on the number of particles delivered to each spot, the intensity is reduced when spots that require low number of particles are present in a layer. A method to shorten the irradiation time based on variable intensity within the same layer is presented that works also with a betatron based extraction scheme.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF024 Turn-by-Turn Position Measurements at CNAO with the Libera Spark HR Prototype 1870
 
  • M. Cargnelutti, M. Žnidarčič
    I-Tech, Solkan, Slovenia
  • G.M.A. Calvi, A. Parravicini, E. Rojatti, C. Viviani
    CNAO Foundation, Milan, Italy
 
  CNAO in Pavia is one of the first centers for hadrontherapy in Europe, treating patients since 2011. The center is an international reference for a whole new concept of machines being constructed for this purpose. The synchrotron BPM electronics is based on analog boards that compute the ratio between difference and sum signals from the shoebox pickup, later acquired by digital cards. Although the system operates reliably, it just calculates the position with 1kHz rate, while the revolution frequency ranges from 0.5 to 3 MHz. To extend the measurement possibilities for these new hadron synchrotrons, Instrumentation Technologies is developing a data acquisition system capable of acquiring the pickup signals with 125MSps ADCs and calculating bunchbybunch positions of the accelerated beam. The first prototype was tested at CNAO: the turnbyturn beam position was analyzed off line, at different energies and positions with both Protons and Carbon ions beam. This paper will presents the results achieved with the system and compares them with the measurements of the current system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF025 Fast Intensity Monitor Based on Channeltron Electron Multiplier 1873
 
  • G.M.A. Calvi, V. Lante, L. Lanzavecchia, G. Magro, A. Parravicini, E. Rojatti, C. Viviani
    CNAO Foundation, Milan, Italy
 
  The paper concerns the Fast Intensity Monitor (FIM) designed for the CNAO (Centro Nazionale di Adroterapia Oncologica), the Italian facility of Oncological Hadrontherapy. The FIM detector has been designed with the purpose of having a continuous and non-destructive measurement of the beam intensity in the High Energy Beam Transfer (HEBT) line. The passage of the beam through a thin aluminum foil produces secondary electrons whose yield depends on beam species (protons or carbon ions), intensity and energy. Secondary electrons are focused on the Channeltron Electron Multiplier (CEM) input, multiplied and sensed over a precision resistor. In order to minimize the perturbation to the beam, the foil is grounded and the read out electronics is floating. This makes electronics design harder but it is a key point to make FIM use possible continuously even during patients treatment. Measurements performed with the FIM are discussed and checked against reference detectors.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)