Author: Ristori, L.
Paper Title Page
WEPMK014 A New Design for the Hilumi Radio-Frequency Dipole Bare Cavity 2659
 
  • M. Parise, P. Berrutti, L. Ristori
    Fermilab, Batavia, Illinois, USA
 
  Crabbing cavities are one of the technological landmark that will allow the LHC to optimize its per-formance and maximize its integrated luminosity by allowing a head-on collision between the bunches despite the non-zero crossing angle. A total of 8 crab cavities will be installed in the interaction region of each of the two experiments, ATLAS and CMS. In the last years, the two types of crab cavities were de-signed, built and tested under the US-LARP R&D pro-gram. Horizontal crabbing is obtained with a radio-frequency dipole cavity (RFD) designed by Old Do-minion University (ODU), SLAC and Fermilab (FNAL). In this paper a new mechanical design, that uses passive stiffeners, is presented. This design leads to a decrease of the Lorentz Force Detuning frequency shift, satisfy the requirements on pressure sensitivity, validate the structural integrity and increase the tuner sensitivity and the maximum elastic tuning range. Furthermore, it will be possible to greatly simplify the shape of the magnetic shield and Helium vessel with respect to the current design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMK014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML015 Preparation and Qualification of Jacketed SSR1 Cavities for String Assembly at Fermilab 2714
 
  • D. Passarelli, P. Berrutti, S.K. Chandrasekaran, J.P. Ozelis, M. Parise, L. Ristori, A.M. Rowe, A.I. Sukhanov
    Fermilab, Batavia, Illinois, USA
 
  The qualification of dressed 325 MHz Single Spoke Resonators type 1 (SSR1) to meet technical requirements is an important milestone in the development of the SSR1 cryomodule for the PIP-II Project at Fermilab. This paper reports the procedures and lessons learned in processing and preparing these cavities for horizontal cold testing prior to integration into a cavity string assembly.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)