Paper | Title | Page |
---|---|---|
THPML089 | Tuning of 3-tap Bandpass Filter During Acceleration for Longitudinal Beam Stabilization at FAIR | 4866 |
|
||
During acceleration in the heavy-ion synchrotrons SIS18/SIS100 at GSI/FAIR longitudinal beam oscillations are expected to occur. To reduce longitudinal emittance blow-up, dedi- cated LLRF beam feedback systems are planned. To date, damping of longitudinal beam oscillations has been demon- strated in SIS18 machine experiments with a 3-tap filter controller (e.g. *), which is robust in regard to control pa- rameters and also to noise. On acceleration ramps the control parameters have to be adjusted to the varying synchrotron frequency. Previous results from beam experiments at GSI indicate that a proportional tuning rule for one parameter and an inversely proportional tuning rule for a second parameter is feasible, but the obtained damping rate may not be opti- mal for all synchrotron frequencies during the ramp. In this work, macro-particle simulations are performed to evaluate, whether it is sufficient to adjust the control parameters pro- portionally (inversely proportionally) to the change in the linear synchrotron frequency, or if it is necessary to take more pa- rameters, such as bunch-length and synchronous phase, into account to achieve stability and a considerable high damping rate for excited longitudinal dipole beam oscillations. This is done for single- and dual-harmonic acceleration ramps.
* H. Klingbeil et al., "A Digital Beam-Phase Control System for Heavy-Ion Synchrotrons", in IEEE Transactions on Nuclear Science, vol. 54, no. 6, pp. 2604-2610, Dec. 2007. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML089 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |