Author: Ranjbar, V.H.
Paper Title Page
MOPMF013 eRHIC EIC: Plans for Rapid Acceleration of Polarized Electron Bunch at Cornell Synchrotron 108
 
  • F. Méot, E.C. Aschenauer, H. Huang, C. Montag, V. Ptitsyn, V.H. Ranjbar, E. Wang, Z. Zhao
    BNL, Upton, Long Island, New York, USA
  • I.V. Bazarov, D. L. Rubin
    Cornell University, Ithaca, New York, USA
  • L. Cultrera, G.H. Hoffstaetter, K.W. Smolenski, R.M. Talman
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D. Gaskell, O. Glamazdin, J.M. Grames
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
An option as an injector into the polarized-electron storage ring of eRHIC EIC is a rapid-cycling synchrotron (RCS). Cornell's 10 GeV RCS injector to CESR presents a good opportunity for dedicated polarized bunch rapid-acceleration experiments, it can also serve as a test bed for source and polarimetry developments in the frame of the EIC R&D, as polarized bunch experiments require disposing of a polarized electron source, and of dedicated polarimetry in the linac region and in the RCS proper. This is as well an opportunity for a pluri-disciplinary collaboration between Laboratories. This paper is an introduction to the topic, and to on-going activities towards that EIC R&D project.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMF016 Progress on RCS eRHIC Injector Design 115
 
  • V.H. Ranjbar, M. Blaskiewicz, J.M. Brennan, S.J. Brooks, D.M. Gassner, H.-C. Hseuh, I. Marneris, F. Méot, M.G. Minty, C. Montag, V. Ptitsyn, K.S. Smith, S. Tepikian, F.J. Willeke, H. Witte, B. P. Xiao, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • I.V. Pogorelov
    Tech-X, Boulder, Colorado, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
We have refined the design for the Rapid Cycling Synchrotron (RCS) polarized electron injector for eRHIC. The newer design includes bypasses for the eRHIC detectors and definition of the lattice layout in the existing RHIC tunnel. Additionally, we provide more details on the RF, alignment and orbit control, and magnet specifications.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMF018 Numerical Simulation of Spin Dynamics with Spin Flipper in RHIC 118
 
  • P. Adams, H. Huang, J. Kewisch, F. Méot, P. Oddo, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, T. Roser
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Spin flipper experiments during RHIC Run 17 were performed to study its effectiveness as a method for polarization sign reversal during stores. Numerical simulations are reported here, which were performed in accompaniment of these, and are being pursued with the aim of accurately reproducing the experimental conditions and providing thorough insight in the role of various key parameters participating in the dynamics of the spin flip, such as the sweep rate of the AC dipole, chromatic orbit control at RHIC snakes, RF parameters, possible effects of non-linear spin resonances, mirror resonance, tolerance on flipper magnet parameters, etc. The ultimate goal is for these simulations to serve as a guidance toward perfect flip to allow routine use during physics Runs.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUYGBD3 eRHIC Design Status 628
 
  • V. Ptitsyn, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, K.A. Drees, A.V. Fedotov, W. Fischer, D.M. Gassner, W. Guo, Y. Hao, A. Hershcovitch, H. Huang, W.A. Jackson, J. Kewisch, C. Liu, H. Lovelace III, Y. Luo, F. Méot, M.G. Minty, C. Montag, R.B. Palmer, B. Parker, S. Peggs, V.H. Ranjbar, G. Robert-Demolaize, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, N. Tsoupas, W.-T. Weng, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, Long Island, New York, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The electron-ion collider eRHIC aims at a luminosity around 1034cm-2sec-1, using strong cooling of the hadron beam. Since the required cooling techniques are not yet readily available, an initial version with a peak luminosity of 3*1033cm-2sec-1 is being developed that can later be outfitted with strong hadron cooling. We will report on the current design status and the envisioned path towards 1034cm-2sec-1 luminosity.
 
slides icon Slides TUYGBD3 [11.790 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUYGBD3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF018 Magnet Designs for the eRHIC Rapid Cycling Synchrotron 2404
 
  • H. Witte, I. Marneris, V.H. Ranjbar
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Presently the electron-ion collider eRHIC is under design, which aims to provide a facility with a peak luminosity of 1034cm-2sec-1. Part of the eRHIC design is a rapid cycling synchrotron, which accelerates electrons from 1-18 GeV. In this paper we present conceptual designs of the required dipole, quadrupole and sextupole magnets. The magnets meet the specifications in terms of performance and field quality with an acceptable power dissipation. The power supply requirements are also discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)