Author: Rajaram, D.
Paper Title Page
TUPML065 Phase Space Density Evolution in MICE 1692
 
  • D. Rajaram
    Illinois Institute of Technology, Chicago, Illinois, USA
  • V. Blackmore
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  Funding: STFC, DOE, NSF, INFN, and CHIPP
The Muon Ionization Cooling Experiment (MICE) collaboration will demonstrate the feasibility of ionization cooling, the technique proposed to cool the muon beam at a future neutrino factory or muon collider. The muon beam parameters are measured before and after the cooling cell using high precision scintillating-fibre trackers in a solenoidal magnetic field. Position and momentum reconstruction of each muon in MICE allows the development of several alternative figures of merit in addition to emittance. Contraction of the phase-space volume of the sample, or equivalently the increase in phases-pace density at its core, is an unequivocal cooling signature. Single-particle amplitude, defined as a weighted distance to the sample centroid, can be used to probe the change in density in the core of the beam. Alternatively, non-parametric statistics provide reliable methods to estimate the entire phase-space density distribution and reconstruct probability contours. The aforementioned techniques, robust to transmission losses and sample non linearities, are ideal candidates for a cooling measurement in MICE. Preliminary results are presented here*.
*Submitted by the MICE Speakers bureau, to be prepared and presented by a MICE member to be selected in due course
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)