Author: Polzin, T.
Paper Title Page
MOPMF062 Upgrade of the Dilution System for HL-LHC 261
 
  • C. Wiesner, W. Bartmann, C. Bracco, M. Calviani, E. Carlier, L. Ducimetière, M.I. Frankl, M.A. Fraser, S.S. Gilardoni, B. Goddard, T. Kramer, A. Lechner, N. Magnin, A. Perillo-Marcone, T. Polzin, E. Renner, V. Senaj
    CERN, Geneva, Switzerland
 
  The LHC Beam Dump System is one of the most critical systems for reliable and safe operation of the LHC. A dedicated dilution system is required to sweep the beam over the front face of the graphite dump core in order to reduce the deposited energy density. The High Luminosity Large Hadron Collider (HL-LHC) project foresees to increase the total beam intensity in the ring by nearly a factor of two, resulting in a correspondingly higher energy deposition in the dump core. In this paper, the beam sweep pattern and energy deposition for the case of normal dilution as well as for the relevant failure cases are presented. The implications as well as possible mitigations and upgrade measures for the dilution system, such as decreasing the pulse-generator voltage, adding two additional kickers, and implementing a retrigger system, are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK091 Design of the New Proton Synchrotron Booster Absorber Scraper (PSBAS) in the Framework of the Large Hadron Collider Injection Upgrade (LIU) Project 3444
 
  • L. Teofili, M. Migliorati
    Sapienza University of Rome, Rome, Italy
  • J.A. Briz Monago, M. Calviani, N. Chritin, J.J. Esala, S.S. Gilardoni, I. Lamas Garcia, J. Maestre, T. Polzin, T.L. Rijoff
    CERN, Geneva, Switzerland
  • T.L. Rijoff
    TU Darmstadt, Darmstadt, Germany
 
  The Large Hadron Collider (LHC) Injector Upgrade (LIU)Project at CERN calls for increasing beam intensity for the LHC accelerator chain. Some machine components will not survive the new beam characteristics and need to be rebuilt for the new challenging scenario. This is particularly true for beam intercepting devices (BIDs) such as dumps, collimators, and absorber/scrapers, which are directly exposed to beam impacts. In this context, this work summarizes conceptual design studies on the new Proton Synchrotron Booster (PSB) Absorber/Scraper (PSBAS), a device aimed at cleaning the beam halo at the very early stage of the PSB acceleration. This paper outlines the steps performed to fulfil the component design requirements. It discusses thermo-mechanical effects as a consequence of the beam-matter collisions, simulated with the FLUKA Monte Carlo code and ANSYS finite element software; and the impedance minimization study performed to prevent beam instabilities and to reduce RF-heating on the device.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK091  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)