Paper |
Title |
Page |
MOPMF032 |
Nonlinear Correction Strategies for the LHC Using Resonance Driving Terms |
161 |
|
- F.S. Carlier, E.H. Maclean, T. Persson, R. Tomás
CERN, Geneva, Switzerland
|
|
|
The correction of nonlinearities in future colliders is critical to reach operational conditions and pose a significant challenge for commissioning schemes. Several approaches have been succesfully used in the LHC to correct sextupolar and octupolar sources in the LHC insertion regions. Measurements of resonance driving terms at top energy in the LHC have improved and now offer a new observable to calculate and validate nonlinear corrections. This paper reports on measurements of resonance driving terms in the LHC and the relevant strategies used for nonlinear corrections.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF032
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
MOPMF033 |
Probing the Forced Dynamic Aperture in the LHC at Top Energy Using AC Dipoles |
165 |
SUSPF001 |
|
|
- F.S. Carlier, M. Giovannozzi, E.H. Maclean, T. Persson, R. Tomás
CERN, Geneva, Switzerland
|
|
|
Measurements of the dynamic aperture in colliders are a common method to ensure machine performance and offer an insight in the nonlinear content of the machine. Such direct measurements are very challenging for the LHC and High Luminosity LHC. Forced dynamic aperture has been demonstrated for the first time in the LHC at injection energy as a potential new observable to safely probe the nonlinear content of the machine. This paper presents the first measurements of forced dynamic aperture at top energy and discusses the proposed measurement schemes and challenges.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF033
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
MOPMF047 |
Transverse Coupling Measurements With High Intensity Beams Using Driven Oscillations |
208 |
|
- T. Persson, G. Baud, X. Buffat, J.M. Coello de Portugal, E. Fol, K. Fuchsberger, M. Gabriel, M. Gąsior, M. Giovannozzi, G.H. Hemelsoet, M. Hostettler, M. Hruska, D. Jacquet, E.H. Maclean, L. Malina, J. Olexa, P.K. Skowroński, M. Solfaroli Camillocci, M.E. Söderén, R. Tomás, D. Valuch, A. Wegscheider, J. Wenninger
CERN, Geneva, Switzerland
|
|
|
Transverse coupling has been linked to instabilities and reduction in dynamic aperture and is hence a crucial parameter to control in the LHC. In this article we describe the development to use driven oscillations to measure the transverse coupling with high intensity beams. The method relies on the use of the transverse damper to drive an oscillation in a similar way as with an AC-dipole. The calculation of the coupling is based on the turn-by-turn data from all available BPMs gated for the excited bunch.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF047
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
MOPMF048 |
Aperture Measurements with AC Dipole at the Large Hadron Collider |
212 |
|
- N. Fuster-Martínez, R. Bruce, J. Dilly, E.H. Maclean, T. Persson, S. Redaelli, R. Tomás
CERN, Geneva, Switzerland
- L.J. Nevay
Royal Holloway, University of London, Surrey, United Kingdom
|
|
|
Global aperture measurements are crucial for a safe operation and to push the performance of the LHC, in particular, the knowledge of aperture at top energy allows pushing the optics to reduce the colliding beam sizes. The standard method used in the LHC commissioning requires using several bunches for one measurement and makes bunches un-usable for other activities. This paper presents first global aperture measurements performed at injection with a new method using the AC dipole. This method consists in exciting large coherent oscillations of the beam without spoiling its emittance. A gentle control of the oscillation amplitude enables re-using the beams for several measurements. These measurements are compared with aperture measurements performed using the standard method and possible benefits, for example for optics measurements, at top energy with squeezed optics, are elaborated.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF048
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|