Author: Papadopoulou, S.
Paper Title Page
MOPMF052 Monitoring and Modeling of the LHC Luminosity Evolution in 2017 224
 
  • N. Karastathis, F. Antoniou, I. Efthymiopoulos, M. Hostettler, G. Iadarola, S. Papadopoulou, Y. Papaphilippou, D. Pellegrini, B. Salvachua
    CERN, Geneva, Switzerland
 
  In 2017, the Large Hadron Collider (LHC) restarted operation at 6.5 TeV, after an extended end-of-the-year stop, scheduled to deliver 45/fb to the two general-purpose experiments. Continuous monitoring of the key beam parameters and machine configurations that impact the delivered luminosity was introduced, providing fast feedback to operations for further optimisation. The numerical model based on simulations and use of selected machine parameters to estimate the machine luminosity was further developed. The luminosity evolution and comparisons to the model predictions is presented in this paper. The impact of the dynamic variation of the crossing angle, which was incorporated into nominal LHC operation, is also discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML009 New High Luminosity LHC Baseline and Performance at Ultimate Energy 408
 
  • L.E. Medina Medrano
    Universidad de Guanajuato, División de Ciencias e Ingenierías, León, Mexico
  • A. Apollonio, G. Arduini, O.S. Brüning, M. Giovannozzi, L.E. Medina Medrano, S. Papadopoulou, Y. Papaphilippou, S. Redaelli, R. Tomás
    CERN, Geneva, Switzerland
 
  Funding: Research supported by the HL-LHC project and the Beam project (CONACYT, Mexico).
The LHC machine is envisioned to operate eventually at an ultimate beam energy of 7.5 TeV at the end of LHC Run 4, i.e. after commissioning of the HL-LHC systems, a stage falling into the High Luminosity LHC (HL-LHC) era. In this paper we review the latest baseline parameters and performance, and study the potential reach of the HL-LHC with pushed optics at the ultimate beam energy. Results in terms of integrated luminosity and effective pile-up density of both the nominal (5.0×1034 cm-2 s−1) and ultimate (7.5×1034 cm-2 s−1) levelling operations are discussed
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)