Author: Olry, G.
Paper Title Page
TUPAF003 Integrated Prototyping in View of the 100 MeV Linac for Myrrha Phase 1 661
 
  • D. Vandeplassche, J. Belmans
    SCK•CEN, Mol, Belgium
  • C. Angulo, D. Davin, W. De Cock, P. Della Faille, F. Doucet, A. Gatera, Pompon, F.F. Pompon
    Studiecentrum voor Kernenergie - Centre d'Étude de l'énergie Nucléaire (SCK•CEN), Mol, Belgium
  • D. Bondoux, F. Bouly
    LPSC, Grenoble Cedex, France
  • H. Höltermann, D. Mäder
    BEVATECH, Frankfurt, Germany
  • C. Joly, G. Olry, H. Saugnac
    IPN, Orsay, France
  • M. Loiselet, N. Postiau, L. Standaert
    UCL, Louvain-la-Neuve, Belgium
  • H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  Funding: Work partially supported by the European Commission H2020 programme MYRTE #662186
The MYRRHA project borne by SCK•CEN, the Belgian Nuclear Research Centre, aims at realizing a pre-industrial Accelerator Driven System (ADS) for exploring the transmutation of long lived nuclear waste. The linac for this ADS will be a High Power Proton Accelerator delivering 2.4 MW CW beam at 600 MeV. It has to satisfy stringent requirements for reliability and availability: a beam-MTBF of 250h is targeted. The reliability goal is pursued through a phased approach. During Phase 1, expected till 2024, the MYRRHA linac up to 100 MeV will be constructed. It will allow to evaluate the reliability potential of the 600 MeV linac. It will also feed a Proton Target Facility in which radioisotopes of interest will be collected through an ISOL system. This contribution will focus on the transition to integrated prototyping, which will emphasize (i) a test platform consisting of the initial section of the normal conducting injector (5.9 MeV), (ii) the realization of a complete cryomodule for the superconducting linac and of its cryogenic valve box. The cryomodule will house two 352 MHz single spoke cavities operated at 2K.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK105 PERLE - Lattice Design and Beam Dynamics Studies 4556
 
  • S.A. Bogacz, D. Douglas, F.E. Hannon, A. Hutton, F. Marhauser, R.A. Rimmer, Y. Roblin, C. Tennant
    JLab, Newport News, Virginia, USA
  • D. Angal-Kalinin, J.W. McKenzie, B.L. Militsyn, P.H. Williams
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • G. Arduini, O.S. Brüning, R. Calaga, K.M. Dr. Schirm, F. Gerigk, B.J. Holzer, E. Jensen, A. Milanese, E. Montesinos, D. Pellegrini, P.A. Thonet, A. Valloni
    CERN, Geneva, Switzerland
  • S. Bousson, D. Longuevergne, G. Olivier, G. Olry
    IPN, Orsay, France
  • I. Chaikovska, W. Kaabi, A. Stocchi, C. Vallerand
    LAL, Orsay, France
  • B. Hounsell, M. Klein, U.K. Klein, P. Kostka, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • E.B. Levichev, Yu.A. Pupkov
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: Work has been authored by Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177 with the U.S. Department of Energy.
PERLE (Powerful ERL for Experiments) is a novel ERL test facility, initially proposed to validate choices for a 60 GeV ERL foreseen in the design of the LHeC and the FCC-eh. Its main thrust is to probe high current, CW, multi-pass operation with superconducting cavities at 802 MHz (and perhaps testing other frequencies of interest). With very high virtual beam power (~ 10 MW), PERLE offers an opportunity for controllable study of every beam dynamic effect of interest in the next generation of ERL design; becoming a ‘stepping stone' between present state-of-art 1 MW ERLs and future 100 MW scale applications. PERLE design features Flexible Momentum Compaction lattice architecture for six vertically stacked return arcs and a high-current, 6 MeV, photo-injector. With only one pair of 4 cavity cryomodules, 400 MeV beam energy can be reached in 3 re-circulation passes, with beam currents in excess of 15 mA. The beam is decelerated in 3 consecutive passes back to the injection energy, transferring virtually stored energy back to the RF. This unique facility will serve as a test-bed for high current ERL technologies, as well as a user facility in low energy electron and photon physics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK105  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)