Author: Nadolski, L.S.
Paper Title Page
MOPML031 Highlights of Accelerator Activities in France on Behalf of the Accelerator Division of the French Physics Society 470
 
  • J.-L. Revol
    ESRF, Grenoble, France
  • S. Chel
    CEA/IRFU, Gif-sur-Yvette, France
  • B. Cros
    CNRS LPGP Univ Paris Sud, Orsay, France
  • N. Delerue
    LAL, Orsay, France
  • E. Giguet
    ALSYOM, Versailles, France
  • V. Le Flanchec
    CEA/DAM, Bruyères-le-Châtel, France
  • L.S. Nadolski
    SOLEIL, Gif-sur-Yvette, France
  • L. Perrot
    IPN, Orsay, France
  • A. Savalle
    GANIL, Caen, France
  • T. Thuillier
    LPSC, Grenoble Cedex, France
 
  The French Physical Society is a non-profit organization working to advance and diffuse the knowledge of physics. Its Accelerators division contributes to the promotion of accelerator activities in France. This paper presents the missions and actions of the division, high-lighting those concerning young scientists. A brief presentation of the laboratories, institutes, and facilities that are the main actors in the field is given. Significant ongoing and planned projects in France are described, including medical applications. Main French contributions in inter-national projects are then listed. Finally, cultural and technical relationships between industry and laboratories are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK092 SOLEIL Status Report 4516
 
  • L.S. Nadolski, G. Abeillé, Y.-M. Abiven, P. Alexandre, F. Bouvet, F. Briquez, P. Brunelle, A. Buteau, N. Béchu, M.-E. Couprie, X. Delétoille, T. Didier, J.M. Dubuisson, C. Herbeaux, N. Hubert, C.A. Kitegi, M. Labat, J.-F. Lamarre, P. Lebasque, A. Lestrade, A. Loulergue, P. Marchand, O. Marcouillé, F. Marteau, A. Nadji, R. Nagaoka, P. Prigent, F. Ribeiro, K.T. Tavakoli, M.-A. Tordeux, M. Valléau
    SOLEIL, Gif-sur-Yvette, France
 
  SOLEIL is both a synchrotron light source and a research laboratory at the cutting edge of experimental techniques dedicated to matter analysis down to the atomic scale, as well as a service platform open to all scientific and industrial communities. This French 2.75 GeV third generation synchrotron light source provides today extremely stable photon beams to 29 beamlines (BLs) complementary to ESRF. We report facility performance, ongoing projects and recent major achievements. A significant work was performed in order to secure the operation of the two canted 5.5 mm in-vacuum cryogenic permanent magnet undulators (CPMUs). Major R&D areas will also be discussed, and progress towards a lattice baseline for making SOLEIL a diffraction limited storage ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK092  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML034 Baseline Lattice for the Upgrade of SOLEIL 4726
 
  • A. Loulergue, P. Alexandre, P. Brunelle, O. Marcouillé, A. Nadji, L.S. Nadolski, R. Nagaoka, K.T. Tavakoli, M.-A. Tordeux, A. Vivoli
    SOLEIL, Gif-sur-Yvette, France
  • L. Hoummi
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Previous MBA studies converged to a lattice composed of 7BA-6BA with a natural emittance value of 200- 250 pm.rad range. Due to the difficulties of non-linear optimization in targeting lower emittance values, a decision was made to symmetrize totally the ring with 20 identical cells having long free straight sections longer than 4 m. A 7BA solution elaborated by adopting the sextupole paring scheme with dispersion bumps originally developed at the ESRF-EBS, including reverse-bends, enabling an emittance of 72 pm.rad has been defined as the baseline lattice. The sufficient on-momentum dynamic aperture obtained allows to consider off-axis injection. The linear and nonlinear dynamic properties of the lattice along with the expected performance in terms of brilliance and transverse coherence are presented. In particular, the beta functions tuned down to 1 m in both transverse planes at the center of straight sections allow matching diffraction limited photons up to 3 keV.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)