Paper | Title | Page |
---|---|---|
TUPML021 | A Beamline Design to Transport Laser Wakefield Electrons to a Transverse Gradient Undulator | 1577 |
SUSPF041 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: This work was supported by the UK Science and Technology Facilities Council, Grant No. ST/G008248/1. The Cockcroft Beamline is to be installed at the Scottish Centre for the Application of Plasma-based Accelerators (SCAPA). The beamline is designed to transport 1 GeV electrons from a laser wakefield acceleration (LWFA) source to a pair of transverse gradient undulators. The project aims to produce X-ray undulator radiation in the first phase and free-electron laser (FEL) radiation in the second phase. The total beamline will be less than 23 m long, thus the Cockcroft Beamline has the potential to be the UK's first compact X-ray FEL. Here we present the main features of the beamline design. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMK059 | Commissioning of Front End of CLARA Facility at Daresbury Laboratory | 4426 |
|
||
CLARA (Compact Linear Accelerator for Research and Applications) is a Free Electron Laser (FEL) test facility being developed at STFC Daresbury Laboratory. The principal aim of CLARA is to test advanced FEL schemes which can later be implemented on existing and future short wavelength FELs. The installation of the Front End (FE) section of CLARA, a S-bend merging with existing VELA (Versatile Electron Linear Accelerator) beam line and installation of a high repetition rate RF gun on VELA was completed in 2017. First beam commissioning results and high level software developments are presented in this paper. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK059 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAK094 | High Acceptance Beamline for the Capture of a Laser Wakefield Accelerated Beam | 3456 |
|
||
Laser wakefield acceleration, together with other types of novel acceleration techniques, has seen considerable progress of late. Together with this progress comes a question, which has only recently started to be addressed, of how to transport and utilise such beams. This is a challenge because of the high initial divergence of these beams. There are several approaches to this problem and we concentrate on one in this paper and look at the implications of it in some detail. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK094 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPML060 | Virtual VELA-CLARA: The Development of a Virtual Accelerator | 4773 |
|
||
A Virtual Accelerator (VA) has been developed to mimic the accelerators Versatile Electron Linear Accelerator (VELA) and Compact Linear Accelerator for Research and Applications (CLARA). Its purpose is to test control room applications, run start-to-end simulations with multiple simulation codes, accurately reproduce measured beam properties, conduct 'virtual experiments'and gain insight into ‘hidden beam parameters'. This paper gives an overview into the current progress in constructing this VA, detailing the areas of: developing a 'Virtual EPICS' control system, using multiple simulation codes (both particle tracking and analytic), the development of a ‘Master Lattice' and the construction of a Python interface in which to run the VA. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML060 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |