Author: Monard, H.
Paper Title Page
WEPAL035 The Synchronization System of the Thomx Accelerator 2243
 
  • N. Delerue, V. Chaumat, R. Chiche, N. ElKamchi, H. Monard, F. Wicek
    LAL, Orsay, France
  • B. Lucas
    CNRS LPGP Univ Paris Sud, Orsay, France
 
  Funding: CNRS and ANR
The ThomX compact light source uses a 50 MeV ring to produce X-rays by Compton scattering. For historical reasons the linac and the ring could not operate at harmonic frequencies of each other. A heterodyne synchronization system has been designed for this accelerator. This synchronization is based on mixing the two RF frequencies to produce an heterodyne trigger signal and that is then distributed to the users. Bench tests of the system has demonstrated a jitter of less than 2 ps. We describe here this synchronization system.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAL048 Control Command Strategy for the ThomX Accelerator 2284
 
  • H. Guler, N. ElKamchi, P. Gauron, H. Monard
    LAL, Orsay, France
 
  ThomX is an accelerator project designed to create a compact X Compton Backscattering Source for medical and cultural heritage applications. Control-Command (CC) system is a central part for the commissionning. ThomX CC is designed with TANGO SCADA system. This framework allows to control several devices from several places with the same SCADA System. TANGO Device Servers are software programs allowing to control devices and to implement data processing and presentation layers. For commissionning, experts need to access values of each device in a convenient way to allow them to modify parameters and check effect of a configuration on hardware. CC is a key part for this stage. Several GUI have been designed and gathered into several panels in collaboration with each expert group to gather their needs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL017 From design to alignment of ThomX quadrupoles 3660
 
  • C. Vallerand, R. Marie, H. Monard
    LAL, Orsay, France
  • J. Campmany, J. Marcos, V. Massana
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • J. Chavanne, G. Le Bec
    ESRF, Grenoble, France
  • M.-E. Couprie, A. Lestrade, A. Loulergue, F. Marteau, M. Ros
    SOLEIL, Gif-sur-Yvette, France
 
  Quadrupoles for Thomx Facility have been carefully designed and measured due to high constraints of the storage ring. The need of a compact accelerator, 70 m2 on floor, as well as a beam life time of 20 ms, led to the following requirements for the quadrupole : a gradient of 5 T/m with 20.5 mm radius bore, harmonic content better than few 1.10-3 at the reference radius of 18 mm, no cross-talk with sextupole placed within 5 cm and a precision of the magnetic axis of 100 μm and the roll angle of 300 μrad for measurements and alignment. Total of 41 quadrupoles have been built and all measured by a rotating coil at ALBA and SOLEIL, providing multipole components, transfer function and magnetic center. Cross-check measurements have also been carried out with a versatile stretched wire from ESRF at LAL. This paper mainly describes results of simulations with OPERA and RADIA and provides the results of measurements with these three benches. These results will be compared and highlighted important points for the alignment and installation of quadrupoles in an accelerator.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK115 Optical Cavity R&D for Laser-Electron Interaction Applications 4587
SUSPF032   use link to see paper's listing under its alternate paper code  
 
  • X. Liu, W.-H. Huang, C.-X. Tang, L.X. Yan
    TUB, Beijing, People's Republic of China
  • R. Chiche, K. Dupraz, P. Favier, A. Martens, H. Monard, Z.F. Zomer
    LAL, Orsay, France
  • D. Nutarelli
    LAC, Orsay, France
 
  Laser-electron Inverse Compton Scattering X-ray source based on optical enhancement cavity is expected to produce higher-flux and better-quality X-rays than conventional sources, in addition, to become more compact, much cheaper than Free Electron Laser and Synchrotron Radiation. One X-ray source named ThomX is under construction at LAL, France. An electron storage ring with 50 MeV, 16.7 MHz electron beam will collide with a few picosecond pulsed laser to produce 1013 photons per second. A prototype cavity with a high finesse (F=25,100) in the picosecond regime is used to perform R & D for ThomX. We obtained 380 kW power stored in the optical cavity and mode instabilities were observed. The EOM-based frequency modulation to measure the finesse, the influence of dust on finesse, high-power experiments and other related issues are mentioned briefly. We will also describe the TTX2 (Tsinghua Thomson Scattering X-ray source) at Tsinghua University which is in design process. TTX2 prefers using an electron storage ring and an optical cavity in order to get high X-ray flux.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK115  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)