Author: Moallem, M.
Paper Title Page
THPML082 Reflected Power Based Extremum Seeking Control Algorithm to Tune the Resonance Frequency of Room Temperature Cavities 4844
 
  • R. Leewe, K. Fong, Z. Shahriari
    TRIUMF, Vancouver, Canada
  • M. Moallem
    SFU, Surrey, Canada
 
  A sliding mode extremum seeking algorithm to tune the resonance frequency was implemented in two of TRIUMF's DTL tanks. The tuning algorithm searches for the minimum reflected power point and was developed to eliminate the highly temperature dependent phase measurement, which was previously used to tune the resonance frequency. Short and long term measurement results show that the tuning algorithm compensates for the RF heating effect as well as for diurnal temperature variations. Reflected power measurements of TRIUMF's DTL tank 3 were taken for both cases of operating the phase based tuning system and the reflected power based tuning system, with an outcome of a higher tuning accuracy of the newly developed system. Another advantage is a quick cavity start up time, as the reflected power based system does not rely on a reference set point which has do be adjusted manually. The sliding mode extremum seeking control loop is currently commissioned in further room temperature cavities of the TRIUMF's ISAC I facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML082  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)