Paper |
Title |
Page |
MOPMF054 |
Comparison of Different Transverse Emittance Measurement Techniques in the Proton Synchrotron Booster |
232 |
|
- G.P. Di Giovanni, S.C.P. Albright, V. Forte, M.A. Fraser, G. Guidoboni, B. Mikulec, F. Roncarolo, A. Santamaría García
CERN, Geneva, Switzerland
|
|
|
The measurement of the transverse emittance in an accelerator is a crucial parameter to evaluate the performance of the machine and to understand beam dynamics processes. In recent years, controlling and understanding the emittance became particularly relevant in the Proton Synchrotron Booster (PSB) at CERN as part of the LHC Injectors Upgrade (LIU). The LIU project is a necessary step to achieve the goals of the High-Luminosity LHC project. In this framework, an accurate and reliable emittance measurement of high brightness beams is mandatory to study the brightness reach of the LHC injectors. In the PSB there are two main instruments available for emittance measurements: wire scanners and secondary-emission (SEM) grids. In this paper emittance measurements performed during the 2017 physics run with these two systems are compared, taking into account various systematic error sources.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF054
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPAF047 |
Systematic Studies of Transverse Emittance Measurements Along the CERN PS Booster Cycle |
806 |
|
- A. Santamaría García, S.C.P. Albright, H. Bartosik, J.A. Briz Monago, G.P. Di Giovanni, V. Forte, B. Mikulec, F. Roncarolo, V. Vlachoudis
CERN, Geneva, Switzerland
|
|
|
The CERN Proton Synchrotron Booster (PSB) will need to deliver 2 times the current brightness to the Large Hadron Collider (LHC) after the LHC Injectors Upgrade (LIU) to meet the High-Luminosity-LHC beam requirements. Beam intensity and transverse emittance are the key parameters to increase brightness, the latter being more difficult to manipulate. It is, therefore, crucial to monitor not only the emittance evolution between the different injectors but also along each acceleration cycle. To this end, detailed emittance measurements were carried out for the four rings of the PSB at various times in the cycle with different beam types. A thorough analysis of systematic error sources was conducted including multiple Coulomb scattering happening during profile measurements with wire scanners, where experimental and analytical treatments of the emittance blow-up were compared to FLUKA simulations. In order to properly account for the dispersive contribution, the full momentum spread profile was considered using a deconvolution method. We conclude with an assessment of this first comprehensive emittance evolution measurement along the PSB cycle.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF047
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEPAF077 |
Performance Evaluation of Linac4 During the Reliability Run |
2016 |
|
- O. Rey Orozko, A. Apollonio, S.S. Erhard, G. Guidoboni, B. Mikulec, J.A. Uythoven
CERN, Geneva, Switzerland
|
|
|
Linac4 will replace Linac2 as the first element in the CERN proton injector chain from 2020 onwards, following the second LHC long shutdown (LS2). With more than three times higher energy and number of compo-nents than Linac2, beam availability is one of the main challenges of Linac4. Intended as a smooth transition from commissioning to operation, a Linac4 Reliability Run was started in July 2017 and is foreseen to last until mid-May 2018. The goal is to achieve the target availability of 95 %. This implies consolidated routine operation and identification of recurring problems. This paper introduces the schedule and operational aspects of the Linac4 Reliability Run, including the developed tools and methods for availability tracking. The paper also summarizes the lessons learned during the first period of the Linac4 Reliability Run with respect to fault tracking and provides an in-depth analysis of the failure modes and observed availability.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF077
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|