Paper | Title | Page |
---|---|---|
MOPMF013 | eRHIC EIC: Plans for Rapid Acceleration of Polarized Electron Bunch at Cornell Synchrotron | 108 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. An option as an injector into the polarized-electron storage ring of eRHIC EIC is a rapid-cycling synchrotron (RCS). Cornell's 10 GeV RCS injector to CESR presents a good opportunity for dedicated polarized bunch rapid-acceleration experiments, it can also serve as a test bed for source and polarimetry developments in the frame of the EIC R&D, as polarized bunch experiments require disposing of a polarized electron source, and of dedicated polarimetry in the linac region and in the RCS proper. This is as well an opportunity for a pluri-disciplinary collaboration between Laboratories. This paper is an introduction to the topic, and to on-going activities towards that EIC R&D project. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF013 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMF014 | Polarization at eRHIC Electron Storage Ring, an Ergodic Approach | 112 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Based on considerations of ergodicity of the dynamical system of an electron bunch at equilibrium, the preservation of polarization in an electron storage ring is estimated from the tracking of a very limited number of electrons. This has a substantial impact on required High Power Computing resources, in noticeable contrast with the method generally used that tracks tens of electron bunches, each comprised of thousands of particles, for several thousands of turns. It is also shown that a minimum number of tracking turns is required in order to ensure the numerical convergence of the linear regressions that yield depolarizing time constant values from tracking, in both methods. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF014 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMF016 | Progress on RCS eRHIC Injector Design | 115 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. We have refined the design for the Rapid Cycling Synchrotron (RCS) polarized electron injector for eRHIC. The newer design includes bypasses for the eRHIC detectors and definition of the lattice layout in the existing RHIC tunnel. Additionally, we provide more details on the RF, alignment and orbit control, and magnet specifications. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF016 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMF018 | Numerical Simulation of Spin Dynamics with Spin Flipper in RHIC | 118 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Spin flipper experiments during RHIC Run 17 were performed to study its effectiveness as a method for polarization sign reversal during stores. Numerical simulations are reported here, which were performed in accompaniment of these, and are being pursued with the aim of accurately reproducing the experimental conditions and providing thorough insight in the role of various key parameters participating in the dynamics of the spin flip, such as the sweep rate of the AC dipole, chromatic orbit control at RHIC snakes, RF parameters, possible effects of non-linear spin resonances, mirror resonance, tolerance on flipper magnet parameters, etc. The ultimate goal is for these simulations to serve as a guidance toward perfect flip to allow routine use during physics Runs. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF018 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUYGBD3 | eRHIC Design Status | 628 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The electron-ion collider eRHIC aims at a luminosity around 1034cm-2sec-1, using strong cooling of the hadron beam. Since the required cooling techniques are not yet readily available, an initial version with a peak luminosity of 3*1033cm-2sec-1 is being developed that can later be outfitted with strong hadron cooling. We will report on the current design status and the envisioned path towards 1034cm-2sec-1 luminosity. |
||
![]() |
Slides TUYGBD3 [11.790 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUYGBD3 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUYGBE2 | CBETA, the 4-Turn ERL with SRF and Single Return Loop | 635 |
|
||
Funding: Supported by NSF award DMR-0807731, DOE grant DE-AC02-76SF00515, and NYSERDA. A collaboration between Cornell University and Brookhaven National Laboratory has designed and is constructing CBETA, the Cornell-BNL ERL Test Accelerator on the Cornell campus. The ERL technology that has been prototyped at Cornell for many years is being used for this new accelerator, including a DC electron source and an SRF injector Linac with world-record current and normalized brightness in a bunch train, a high-current linac cryomodule optimized for ERLs, a high-power beam stop, and several diagnostics tools for high-current and high-brightness beams. BNL has designed multi-turn ERLs for several purpose, dominantly for the electron beam of eRHIC, its Electron Ion Collider (EIC) project and for the associated fast electron cooling system. Also in JLEIC, the EIC designed at JLAB, an ERL is envisioned to be used for electron cooling. The number of transport lines in an ERL is minimized by using return arcs that are comprised of a Fixed Field Alternating-gradient (FFA) design. This technique will be tested in CBETA, which has a single return for the 4-beam energies with strongly-focusing permanent magnets of Halbach type. The high-brightness beam with 150~MeV and up to 40~mA will have applications beyond accelerator research, in industry, in nuclear physics, and in X-ray science. Low current electron beam has already been sent through the most relevant parts of CBETA, from the DC gun through both cryomodules, through one of the 8 similar separator lines, and through one of the 27 similar FFA structures. Further construction is envisioned to lead to a commissioning start for the full system early in 2019. |
||
![]() |
Slides TUYGBE2 [17.343 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUYGBE2 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPAF005 | Status of AC-Dipole Project at RHIC Injectors for Polarized Helions | 669 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Polarized helions will be used in the eRHIC collider to collide with polarized electrons. To allow efficient transport of polarized helions in the Booster, to rigidities sufficiently high (B rho=10.8 T.m, |G gamma|=10.5) for minimizing the optical perturbations from the two partial helical dipoles in the AGS, an upgrade for overcoming depolarizing intrinsic resonances is needed. An AC-dipole is being designed to induce spin flips through intrinsic resonances. Booster AC-dipole operation will be established with protons while the polarized helion source is being completed. This paper reports the status of the project (which is now well advanced after two years of theoretical and design studies) and provides an overview of proof of principle experiments to take place after successful installation of the AC-dipole, during RHIC Run 19 with polarized proton beams. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF005 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPMF024 | Validation of the Halbach FFAG Cell of Cornell-BNL Energy Recovery Linac | 1304 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The optical properties of the Halbach technology based CBETA ERL return FFAG arc cell are investigated, using its 3-D OPERA field map model. This includes paraxial and large amplitude motion, tune path, study of resonances, dynamic acceptance, effects of various defects, 300-cell 10k-particle bunches 6D transmission trials. These investigations, a 2~3 year investment, have validated the Halbach technology in the linear FFAG cell application, from the point of view of the beam dynamics, so supporting its approval as the required technology for CBETA, in December 2016. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF024 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAF021 | Start to End Simulation of the CBETA Energy Recovery Linac | 2993 |
|
||
Funding: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. CBETA is an energy recovery linac accelerating from 6 MeV to 150 MeV in four linac passes, using a single return line accepting all energies from 42 MeV to 150 MeV. We simulate a 6-dimensional particle distribution from the injector through the end of the dump line. Space charge forces are taken into account at the low energy stages. We compare results using field maps to those using simpler magnet models. We introduce random and systematic magnet errors to the lattice, apply an orbit correction algorithm, and study the impact on the beam distribution. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAF023 | The Beam Optics of the FFAG Cell of the CBETA ERL Accelerator | 3000 |
|
||
Funding: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The Cornell-Brookhaven Energy Recovery Linac Test Accelerator now under construction will accelerate electrons from 6 MeV to 150 MeV in four linac passes, using a single return line accepting all energies from 42 to 150 MeV. We describe the optical design of the machine, with emphasis on recent updates. We explain how we choose parameters for the wide energy acceptance return arc, taking into account 3D field maps generated from magnet designs. We give the final machine parameters resulting from iterations between desired lattice properties and magnet design. We modified the optics to improve the periodicity of the return arc near its ends and to create adequate space for vacuum hardware. The return arc is connected to the linac with splitter lines that serve to match the optics for each beam energy. We describe how matching conditions were chosen for the splitter lines and how we use them to control longitudinal motion. We simulate the injection and low energy extraction systems including space charge effects, matching the beam properties to the optical parameters of the rest of the machine. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF023 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAK079 | New Algorithms in Zgoubi | 3418 |
|
||
Funding: This work was supported in part by the US Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-SC0017181. The particle tracking code Zgoubi*,** is used for a broad array of accelerator design studies, including FFAGs*** and EICs****,*****. In this paper, we describe recent work aimed at improving Zgoubi's speed and flexibility. In particular, we describe a new implementation of the Zgoubi tracking algorithm that requires significantly less memory and arithmetic. And we describe a new algorithm that performs symplectic tracking through field maps. In addition, we describe the current efforts to parallelize Zgoubi. *https://sourceforge.net/projects/zgoubi/ **F. Méot, FERMILAB-TM-2010, 1997 ***F. Lemuet et al., NIM-A, 547:638, 2005 ****F. Méot et al., eRHIC/45, 2015 *****F. Lin et al., IPAC17, WEPIK114, 2017 |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK079 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |