Paper | Title | Page |
---|---|---|
THPAL123 | Fabrication and Test of β=0.3 325MHz Balloon Single Spoke Resonator | 3934 |
|
||
A novel balloon variant of the single spoke resonator (SSR) has been designed, fabricated and tested at TRIUMF. The cavity is the β=0.3 325 MHz SSR1 prototype for the Rare Isotope Science Project (RISP) in Korea. The balloon variant is specifically designed to reduce the likelihood of multipacting barriers near the operating point. A systematic multipacting study led to a novel geometry, a spherical cavity with re-entrant irises plus a spoke. The balloon cavity provides competitive RF parameters and a robust mechanical structure. Cold tests demonstrated the principle of the balloon concept. The fabrication experience and the preliminary test results will be reported in this paper. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL123 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPML122 | Beta-SRF - A New Facility to Characterize SRF Materials near Fundamental Limits | 4961 |
SUSPL077 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: Natural Sciences and Engineering Research Council of Canada (NSERC) & UBC (NSERC) IsoSiM Program Demands of CW high-power LINAC require SRF cavities operating at the frontier of high accelerating gradient and low RF power dissipation, i.e. high quality factor (Q0). This requirement poses a challenge for standard surface treatment recipes of SRF cavities. In a recent breakthrough, elliptical SRF cavities doped with Nitrogen have been shown to improve Q0 by a factor of 3, close to the fundamental SRF limit. The fundamental mechanisms at microscopic level and optimum doping recipe, however, have still not fully been understood. Materials other than Nb have also been proposed for SRF cavities to overcome the fundamental limit already reached with Nitrogen doping, e.g. Nb3Sn, MgB2, and Nb-SIS multilayer. At TRIUMF, a unique experimental facility is currently being developed to address these issues. This facility will be able to probe local surface magnetic field in the order of the London Penetration Depth (several tens of nm) via \beta decay detection of a low-energy radioactive ion-beam. This allows depth-resolution and layer-by-layer measurement of magnetic field shielding effectiveness of different SRF materials at high-parallel field (up to 200 mT). Design and current development of this facility will be presented here, as well as commissioning and future measurements strategies for new SRF materials. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML122 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |