Author: Martin, I.P.S.
Paper Title Page
WEPAF054 Online Multi Objective Optimisation at Diamond Light Source 1944
 
  • M. Apollonio, R. Bartolini, R.T. Fielder, I.P.S. Martin
    DLS, Oxfordshire, United Kingdom
  • R. Bartolini
    JAI, Oxford, United Kingdom
  • G. Henderson
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • J. Rogers
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  At Diamond Light Source we have developed an Optimization Package currently used online to improve the performance of the machine, usually measured in terms of lifetime, injection efficiency or beam disturbance at injection. The tool is flexible in that control variables in order to optimise objectives (or their functions) can be easily specified by means of EPICS process variables (PV), making it suitable for virtually any sort of optimization. At present three different algorithms can be used to perform optimizations in a multi-objective fashion: Multi-Objective Genetic Algorithm (MOGA), Particle Swarm Optimizer (MOPSO) and Simulated Annealing (MOSA). We present a series of tests aimed at characterizing the algorithm as well as improving the performance of the machine itself.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF008 Conceptual Design of an Accumulator Ring for the Diamond II Upgrade 4046
 
  • I.P.S. Martin, R. Bartolini
    DLS, Oxfordshire, United Kingdom
  • R. Bartolini
    JAI, Oxford, United Kingdom
 
  Diamond Light Source is in the process of reviewing several lattice options for a potential storage ring upgrade. As part of these studies, it has become clear that a substantial reduction in emittance can be achieved by adopting an on-axis injection scheme, thereby relaxing the constraints on the dynamic aperture. In order to achieve the necessary injected bunch properties for this to be viable, a new accumulator ring would be needed. In this paper we review the requirements placed on the accumulator ring design, describe the lattice development process and analyse the performance of the initial, conceptual design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)