Author: Marqversen, O.
Paper Title Page
TUPAF020 Performance of the CERN Low Energy Ion Ring (LEIR) with Xenon beams 705
 
  • R. Alemany-Fernández, S.C.P. Albright, O. Andujar, M.E. Angoletta, J. Axensalva, H. Bartosik, G. Baud, N. Biancacci, M. Bozzolan, S. Cettour Cave, K. Cornelis, J. Dalla-Costa, M. Delrieux, A. Dworak, A. Findlay, F. Follin, A. Frassier, M. Gabriel, A. Guerrero, M. Haase, S. Hirlaender, S. Jensen, V. Kain, L.V. Kolbeck, Y. Le Borgne, D. Manglunki, O. Marqversen, S. Massot, D. Moreno Garcia, D.J.P. Nicosia, S. Pasinelli, L. Pereira, D. Perez, A. Rey, J.P. Ridewood, F. Roncarolo, Á. Saá Hernández, R. Scrivens, O.G. Sveen, G. Tranquille, E. Veyrunes
    CERN, Geneva, Switzerland
 
  In 2017 the CERN Low Energy Ion Ring demonstrated once more the feasibility of injecting, accumulating, cooling and accelerating a new nuclei, 129Xe39 . The operation of this new ion species started at the beginning of March with the start up of the xenon ion source and the Linac3. Ten weeks later the beam arrived to the Low Energy Ion Ring (LEIR) triggering the start of several weeks of beam commissioning in view of providing the injector complex with Xenon beams for different experiments and a series of machine development experiments in LEIR. Two types of beams were setup, the so called EARLY beam, with a single injection into LEIR from Linac3, and the NOMINAL beam with up to seven injections. 2017 was as well an interesting year for LEIR because several improvements in the control system of the accelerator and in the beam instrumentation were done in view of increasing the machine reliability. This paper summarises the beam commissioning phase and all the improvements carried out during 2017.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF084 Commissioning the ELENA Beam Diagnostics Systems at CERN 2043
 
  • G. Tranquille, S. Burger, M. Gąsior, P. Grandemange, T.E. Levens, O. Marqversen, L. Søby
    CERN, Geneva, Switzerland
 
  The Extra Low ENergy Antiproton ring (ELENA) at CERN entered the commissioning phase in November 2016 using H ions and antiprotons to setup the machine at the different energy plateaus. The low intensities and energy of the ELENA beam generate very weak signals making beam diagnostics very challenging. With a circulating beam current of less than 1 μA and an energy where the beam annihilates in less than a few microns of matter, special care was taken during the design phase to ensure an optimal performance of these measurement devices once installed on the ring and transfer lines. A year on we present the performance of the various devices that have been deployed to measure the beam parameters from the extraction point of the Antiproton Decelerator (AD), through the ELENA ring and in the experimental lines.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)