Author: Marendziak, A.M.
Paper Title Page
THPAL106 Heating Unit Controller at NSRC SOLARIS 3885
 
  • W.T. Kitka, P. Bulira, P. Czernecki, M.K. Fa'owski, K. Kubal, P. Kurdziel, A.M. Marendziak, M.P. Nowak, M. Ostoja-Gajewski, M. Rozwadowski, K. Wawrzyniak, Z. Zbylut
    Solaris National Synchrotron Radiation Centre, Jagiellonian University, Kraków, Poland
 
  Solaris is a third generation light source constructed at the Jagiellonian University in Kraków, Poland. The machine was designed by the MAX IV Laboratory team. Commissioning of the machine was accomplished at 2016 April and now synchrotron operate in decay mode. Two beamlines PEEM/XAS and UARPES were installed and now are being commissioned. Three more PHELIX, XMCD and diagnostic beamline have received funding and it will be installed and commissioned in range of next few years. The SOLARIS Heating Unit Controller (HUC) was designed to perform bake-out process of new installed vacuum systems. It will allow to perform activation process of undulator vacuum chamber inner coated with NEG layer and also activation process of NEG strips installed in dipole vacuum chambers. HUC is able to control independently up to six 2 kW temperature channels and two current channels. System was built based on Allen-Bradley PLC and Tango Controls. Easy access to the device is provided by the GUI design based on Taurus framework.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL106  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL107 Three Years of Operational Experience With the Solaris Vacuum System 3888
 
  • A.M. Marendziak, M. Rozwadowski, T. Sobol, M.J. Stankiewicz, A.I. Wawrzyniak
    Solaris National Synchrotron Radiation Centre, Jagiellonian University, Kraków, Poland
 
  Solaris, a 1.5 GeV third generation synchrotron light source, was commissioned in 2016 April and is currently operated in decay mode. Two beamlines PEEM/XAS and UARPES were installed and now are being commis-sioned. Three more PHELIX, XMCD and diagnostic beamlines have received funding and will be installed and commissioned in next few years. With total accumu-lated beam dose near to 690 A.h and three orders of mag-nitude reduction of outgassing the design goal of 500 mA beam current and electron energy of 1.5 GeV has been achieved. As the beam current was increased, a few vacu-um problems were encountered, including vacuum leaks in RF and arc sectors and unexpected pressure bursts near photon absorbers. Lessons learned and operational expe-rience will be presented and discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL107  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)