Paper | Title | Page |
---|---|---|
TUPMF086 | Status of the ARES RF Gun at SINBAD: From its Characterization and Installation towards Commissioning | 1474 |
|
||
The SINBAD facility (Short and INnovative Bunches and Accelerators at DESY) is foreseen to host multiple experiments relating to the production of ultra-short electron bunches and novel high gradient acceleration techniques. The SINBAD-ARES linac will be a conventional S-band linear RF accelerator allowing the production of low charge (0.5 pC - tens pC) ultra-short electron bunches (FWHM length =< 1 fs - few fs) with 100 MeV energy. The installation of the linac will proceed in stages. In this paper we report on the status of the characterization of the ARES RF gun and the installations of the related infrastructure. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF086 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPML035 | FELs Driven by Laser Plasma Accelerators Operated with Transverse Gradient Undulators | 1615 |
|
||
Laser Plasma Accelerators produce beams with a significantly higher energy spread (up to a few percent) compared to conventional electron sources. The high energy spread increases significantly the gain length when used for an FEL. In order to reduce the gain length of the FEL the Transverse Gradient Undulators (TGUs) instead of conventional undulators were proposed. In this paper the limits of this concept are discussed using a modified Version of the GENESIS program*.
*Zhirong Huang et al., Phys. Rev. Lett., 109, 204801 |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML035 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPML041 | Two-Stage Laser-Driven Plasma Acceleration With External Injection for EuPRAXIA | 1634 |
|
||
The EuPRAXIA (European Particle Research Accelerator with eXcellence In Applications) project aims at producing a conceptual design for the worldwide plasma-based accelerator facility, capable of delivering multi-GeV electron beams with high quality. This accelerator facility will be used for various user applications such as compact X-ray sources for medical imaging and high-energy physics detector tests. EuPRAXIA explores different approaches to plasma acceleration techniques. Laser-driven plasma wakefield acceleration with external injection of an RF-generated electron beam is one of the basic research directions of EuPRAXIA. We present studies of electron beam acceleration to GeV energies by a two-stage laser wakefield acceleration with external injection from an RF accelerator. Electron beam injection, acceleration and extraction from the plasma, using particle-in-cell simulations, are investigated. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML041 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAF050 | Simulations of 3D Charge Density Measurements for Commissioning of the PolariX-TDS | 1930 |
SUSPF104 | use link to see paper's listing under its alternate paper code | |
|
||
The prototype of a novel X-band transverse deflection structure, the Polarizable X-band (PolariX) TDS*, is currently being prepared for installation in the FLASHForward beamline** at DESY in early 2019. This structure will have the novel feature of variable polarization of the deflecting mode, allowing bunches to be streaked at any transverse angle, rather than at just one angle as in a conventional cavity. By combining screen profiles from several streaking angles using tomographic reconstruction techniques, the full 3D charge density of a bunch can be obtained***. It is planned to perform this measurement for the first time during commissioning of the structure. In this paper, simulations of this measurement are presented and the effects of jitter are discussed.
*P Craievich et al. paper THPAL068, this conference **A Aschikhin et al. Nucl. Instr. Meth. Phys. Res. A., vol.806, pp.175-183, 2018 ***D Marx et al. J. Phys.: Conf. Ser., vol.874, p.012077, 2017 |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF050 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMF061 | High Gradient Pulsed Quadrupoles for Novel Accelerators and Space Charge Limited Beam Transport | 2505 |
|
||
Novel acceleration schemes like plasma wake-field based accelerators demand for high gradient focusing elements to match the Twiss parameters in the plasma to the transport lattice of the conventional accelerator beamlines, with typically much higher beta-functions. There are multiple candidates for achieving high gradient focusing fields, each one having certain drawbacks. Permanent magnets are limited in tunability, plasma lenses might degrade the transverse beam quality significantly and conventional magnets cannot reach very high gradients and often cannot be placed in direct proximity of the plasma accelerator because of their size. In this paper we present design considerations and simulations on compact, high gradient, pulsed quadrupoles, that could be used e.g. for final focusing of space charge dominated bunches into a LWFA (Laser Wake-Field Accelerator) at SINBAD or other facilities with similar demands. The target design gradient is 200 T/m at a physical aperture on the order of 10 mm. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF061 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAF032 | Simulation Study of an RF Injector for the LWFA Configuration at EuPRAXIA | 3025 |
|
||
The Horizon 2020 Project EuPRAXIA (EuropeanPlasma Research Accelerator with eXcellence In Applications) aims at producing a design report of a highly compact and cost-effective European facility with multi-GeV electron beams using a plasma accelerator. LWFA with external injection from an RF accelerator is one of the most promising configurations. In order to achieve the goal parameters for the 5 GeV, 30 pC electron beam at the entrance of the undulator, a high-quality electron beam with bunch length of less than 10 fs (FWHM) and matched beta functions (~1 mm) at the plasma entrance is required. In addition, from the compactness point of view, the injection energy is desired to be as low as possible. A hybrid compression scheme is considered in this paper and a detailed start-to-end simulation is presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF032 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAL068 | Status of the Polarix-TDS Project | 3808 |
|
||
A collaboration between DESY, PSI and CERN has been established to develop and build an advanced modular X-band transverse deflection structure (TDS) system with the new feature of providing variable polarization of the deflecting force. This innovative CERN design requires very high manufacturing precision to guarantee highest azimuthal symmetry of the structure to avoid the deterioration of the polarization of the streaking field. Therefore, the high-precision tuning-free production process developed at PSI for the C-band and X-band accelerating structures will be used for the manufacturing. We summarize in this paper the status of the production of the prototype and the waveguide networks foreseen in the different facilities. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL068 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMF001 | Beam Dynamics Studies for Beam Focusing and Solenoid Alignment at SINBAD | 4026 |
SUSPF020 | use link to see paper's listing under its alternate paper code | |
|
||
SINBAD (Short INnovative Bunches and Accelerators at DESY) facility under construction at DESY plans to host several experiments for the production of ultra-short bunches and will be a test facility for high-gradient compact novel acceleration techniques. The ARES (Accelerator Research Experiment at SINBAD) linac is foreseen to produce ultra-short bunches to be injected e.g. into Novel Dielectric Laser Acceleration structures or Laser Wake-Field Acceleration experiments. The work presented in this paper is based on optimization of the focusing system consisting of solenoids for the ARES, which have been studied earlier in detail but is revisited for updated beamline. Moreover tolerances for the possible misalignment of solenoids are presented investigating the effect on the beam properties during the gun commissioning.
* J. Zhu, R. Assmann, U. Dorda, B. Marchetti, "Matching sub-fs electron bunches for laser-driven plasma acceleration at SINBAD", Nucl. Instrum. Methods Phys. Res., Sect. A 829, 229 (2016) |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF001 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPML106 | Electron Microscopy Inspired Setup for Single-Shot 4-D Trace Space Reconstruction of Bright Electron Beams | 4909 |
|
||
Funding: This work has been partially supported by the National Science Foundation under Grant No. 1549132 and Department of Energy under award No. DE-SC0009914. In the development of low charge, single-shot diagnostics for high brightness electron beams, Transmission Electron Microscopy (TEM) grids present certain advantages compared to pepper pot masks due to higher beam transmission. In this paper, we developed a set of criteria to optimize the resolution of a point projection image. However, this configuration of the beam with respect to the grid and detector positions implies the measurement of a strongly correlated phase space which entails a large sensitivity to small measurement errors in retrieving the projected emittance. We discuss the possibility of an alternative scheme by inserting a magnetic focusing system in between the grid and the detector, similar to an electron microscope design, to reconstruct the phase space when the beam is focused on the grid. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML106 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |