Author: Mammosser, J.D.
Paper Title Page
THPAL065 Improving the Work Function of Nitrogen-Doped Niobium Surfaces for SRF Cavities by Plasma Processing 3802
 
  • K.E. Tippey, R. Afanador, M. Doleans, S.-H. Kim, J.D. Mammosser, C.J. McMahan
    ORNL, Oak Ridge, Tennessee, USA
  • M. Martinello
    Fermilab, Batavia, Illinois, USA
 
  Funding: DOE research grant FWP-ERKCSA2; DOE contract DE-AC05-00OR22725
Work function and surface chemistries of SiC-polished, electropolished, and nitrogen-doped niobium coupons were analyzed before and after plasma processing using a neon-oxygen gas mixture. These studies represent an initial enquiry into the feasibility of applying the plasma processing technique designed at ORNL for the Spallation Neutron Source (SNS) to the nitrogen-doped Nb cavities for the Coherent Light Source II (LCLS-II). Work function of all measured samples was increased after plasma processing, which indicates the strong potential of the plasma processing technique as a tool for increasing the accelerating gradient of nitrogen-doped cavities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOZGBF4 Evolution of the Superconducting Linac Output Energy at the Spallation Neutron Source 73
 
  • S.-H. Kim, D.E. Anderson, M.T. Crofford, M. Doleans, J. Galambos, S.W. Gold, M.P. Howell, M.A. Plum, D.J. Vandygriff
    ORNL, Oak Ridge, Tennessee, USA
  • R. Afanador, D.L. Barnhart, B. DeGraff, J.D. Mammosser, C.J. McMahan, T.S. Neustadt, C.C. Peters, J. Saunders, D.M. Vandygriff
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: This work was supported by SNS through UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. DOE.
The SNS linac output energy has increased since the start of neutron production in FY2007. The various improvements that contributed to the increase of the linac output energy are LLRF/control system improvement, high voltage converter modulator system improvement, high-power RF system improvement, cryomodule repairs, spare cryomodule development and accelerating gradient improvement through in-situ plasma processing. In this paper, the history of the SNS SCL output energy is reported, and plans for the near-term future and for the Proton Power Upgrade (PPU) project are also presented.
 
slides icon Slides MOZGBF4 [34.185 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOZGBF4  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)