Author: Lopez Sola, E.
Paper Title Page
TUPAF032 Beam Transfer Line Design to the SPS Beam Dump Facility 751
 
  • Y. Dutheil, J. Bauche, M. Calviani, L.A. Dougherty, M.A. Fraser, B. Goddard, C. Heßler, J. Kurdej, E. Lopez Sola
    CERN, Geneva, Switzerland
 
  Studies for the SPS Beam Dump Facility (BDF) are ongoing within the scope of the Physics Beyond Collider project. The BDF is a proposed fixed target facility to be installed in the SPS North Area, to accommodate the SHiP experiment (Search for Hidden Particles), which is most notably aiming at studying hidden sector particles. This experiment requires a high intensity slowly extracted 400 GeV proton beam with 4·1013 protons per 1 s spill to achieve 4·1019 protons on target per year. The extraction and transport scheme will make use of the first 600 m of the existing North Area extraction line. In this paper, we will present the design of the additional 600 m of transfer line towards BDF branching off from the existing line and discuss the detailed design of the BDF beam line, its components and optics. We present the latest results on the study and design of a new laminated Lambertson splitter magnet to provide fast switch between the current North Area experiments and the BDF. The latest specification of a dipole dilution system used to reduce the local peak power of the beam on the target is also presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF033 Beam Optics Studies for BDF and for Tests of a Prototype Target 754
 
  • C. Heßler, M. Calviani, Y. Dutheil, M.A. Fraser, B. Goddard, V. Kain, E. Lopez Sola, F.M. Velotti
    CERN, Geneva, Switzerland
 
  Within the frame of the Physics Beyond Collider project a new fixed target facility at the SPS North Area, the so-called Beam Dump Facility (BDF), is under study. BDF requires a high intensity slowly extracted 400 GeV proton beam with 4·1013 protons per 1 s spill to achieve 4·1019 protons on target per year. This results in an exceptionally high average beam power of 355 kW on the target, which is a major challenge. To validate the target design, a test of a prototype target is planned for 2018 at an existing North Area beam line. A large part of this beam line is in common with the future BDF beam line with comparable beam characteristics and several measurement campaigns were performed in 2017 to study the optics of the line in preparation for the test. The intrinsic characteristics of the slow extraction process make the precise characterisation of the beam reaching the target particularly challenging. This paper presents beam and lattice characterisation methods and associated measurement results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMG002 Beam Dump Facility Target: Design Status and Beam Tests in 2018 2604
 
  • E. Lopez Sola, O. Aberle, P. Avigni, L. Bianchi, J. Busom, M. Calviani, M. Casolino, J.P.C. Espadanal, M.A. Fraser, S. Girod, B. Goddard, D. Grenier, M. Guinchard, C. Heßler, R. Illan Fiastre, R. Jacobsson, M. Lamont, A. Ortega Rolo, B. Riffaud, G. Romagnoli, L. Zuccalli
    CERN, Geneva, Switzerland
 
  The Beam Dump Facility (BDF) Project, currently in its design phase, is a proposed general-purpose fixed target facility at CERN, dedicated to the Search for Hidden Particles (SHiP) experiment in its initial phase. At the core of the installation resides the target/dump assembly, whose aim is to fully absorb the high intensity 400 GeV/c SPS beam and produce charmed mesons. In addition to high thermo-mechanical loads, the most challenging aspects of the proposed installation lie in very high energy and power density deposition that are reached during operation. In order to validate the design of the BDF target, a scaled prototype is going to be tested during 2018 in the North Area at CERN, upstream the existing beryllium primary targets. The prototype testing under representative beam scenarios will allow having an insight of the material response in an unprecedented regime. Online monitoring and an extensive Post Irradiation Experimental (PIE) campaign are foreseen. The current contribution will detail the design and handling aspects of the innovative Target Complex as well as the design of the BDF target/dump core and the design and construction of the prototype target assembly.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMG002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)