Author: Lipka, D.
Paper Title Page
WEPAF049 Energy Beam Position Monitor Button Array Electronics for the European XFEL 1927
 
  • B. Lorbeer, B. Beutner, H.T. Duhme, L. Fröhlich, D. Lipka, D. Nölle
    DESY, Hamburg, Germany
 
  The European XFEL(X-Ray Free Electron Laser) at DESY(Deutsches Elektronen-Synchrotron) in Hamburg/Schenefeld started commissioning in early 2017. Before the pulsed electron beam is accelerated to its final energy of 14 GeV, the energy of the bunch can be compressed in three bunch compression chicanes at 130 MeV, 700 MeV and 2400 MeV. The vacuum chamber in these sections is tapered from 40 mm round beam pipe to a 40 cm rectangular shaped vacuum section. A custom made button array type of BPM(Beam position Monitor) is installed in this section with 26 button electrode feed-throughs. The analog and digital readout electronics for this monitor and the first experience with the calibration and operational aspects of this system are presented in this poster.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAL012 Measurements with the ELI-NP Cavity Beam Position Monitor Read-out Electronics at FLASH 2169
 
  • G. Franzini, D. Pellegrini, M. Serio, A. Stella, A. Variola
    INFN/LNF, Frascati (Roma), Italy
  • B.B. Baricevic, M. Cargnelutti
    I-Tech, Solkan, Slovenia
  • D. Lipka
    DESY, Hamburg, Germany
  • M. Marongiu
    INFN-Roma, Roma, Italy
  • A. Mostacci
    Sapienza University of Rome, Rome, Italy
 
  The Extreme Light Infrastructure - Nuclear Physics Gamma Beam Source (ELI-NP GBS) will be installed and commissioned starting within the next year in Magurele, Romania. It will generate gamma beam through Compton back-scattering of a recirculated laser and a multi-bunch electron beam, produced by a 720 MeV LINAC. In order to obtain bunch by bunch position measurements, four cavity beam position monitors (cBPM) near the two interaction points are foreseen. Extensive tests on the cBPM read-out electronics, recently developed by Instrumentation Technologies and acquired for ELI-NP GBS, were performed in laboratory at INFN-LNF and at FLASH in DESY, during the user operation. In the latter case, three cBPMs installed along the LINAC, with similar features as the ones of ELI-NP GBS, were used as measuring devices and signal sources for the read-out electronics under test. We present here the measurements collected and the related analysis, with a particular focus on the beam position measurement resolution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML076 Design of Control System for Dual-Head Radiation Therapy 4826
SUSPL059   use link to see paper's listing under its alternate paper code  
 
  • H.S. Kim, J.-S. Chai, M. Ghergherehchi, D.H. Ha, J.C. Lee, H. Namgoong, J.H. Seo, Shin, S.W. Shin
    SKKU, Suwon, Republic of Korea
  • D. Lipka
    DESY, Hamburg, Germany
 
  Sungkyunkwan University groups have been developed advanced radiation therapy machine named dual-head radiation therapy gantry for reducing the treatment time by up to 30%. The main difference between previous radiation therapy machine is using two electron LINAC as X-ray sources at radiation therapy. In support of this system, control system based on SCADA and hardware development was implemented. The control system consists of supervisory computers and local controllers and the control network was ethernet and software was written by labVIEW. An overview of this control system is presented in paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)