Author: Li, H.
Paper Title Page
WEPMF022 Coulped Multiphysics Simulation for the Water Cooling Layout of a Rhodotron Cavity 2416
 
  • L. Yang, X. He, H. Li, S.Q. Liao
    CAEP/IFP, Mainyang, Sichuan, People's Republic of China
 
  A Rhodotron-based electron accelerator served as micro-focused X-ray source is under development at IFP, CAEP. The RF-cavity, running in long pulse/ CW mode, will deliver 9 MeV energy to electron beams after multiple accelerations within the same field at a frequency of 107.5MHz. A substantial amount of average power loss with tens of kW will be dissipated on the RF surface of the cavity to maintain the operational field level. Efficient water cooling is critical to prevent large scale temperature rise for stable operation sake. Reasonable prediction of temperature rise becomes essential to assess a certain cooling layout in the design phase. The frequency drift and thermal stress on account of temperature variation and gradient on cavity wall respectively, could be computed accordingly. This paper presents a comprehensive coupled simulation involving electromagnetic, thermal and structural for the RF-cavity of Rhodotron.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)