Paper | Title | Page |
---|---|---|
THPML099 | Phase Extraction and Stabilization for Coherent Pulse Stacking | 4895 |
SUSPL060 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: This work was supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Contract DE-AC02-05CH11231. Coherent pulse stacking (CPS) is a new time-domain coherent addition technique that stacks several optical pulses into a single output pulse, enabling high pulse energy and high average power. We model the CPS as a digital filter in the Z domain, and implement two deterministic algorithms extracting the cavity phase from limited data where only the pulse intensity is available. In a 2-stage 15-pulse CPS system, each optical cavity is stabilized at an individually-prescribed round-trip phase with 0.7 deg and 2.1 deg RMS phase errors for Stage 1 and Stage 2 respectively. Optical cavity phase control with nm accuracy ensures 1.2% intensity stability of the stacked pulse over 12 hours. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML099 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |