Author: Lepercq, P.
Paper Title Page
MOPML044 Start-to-End Beam Dynamic Simulations for PRAE 495
 
  • A. Vnuchenko
    IFIC, Valencia, Spain
  • C. Bruni, M. El Khaldi, A. Faus-Golfe, P. Lepercq, C. Vallerand
    LAL, Orsay, France
  • A. Latina
    CERN, Geneva, Switzerland
 
  The PRAE project (Platform for Research and Applications with Electrons) aims at creating a multidisciplinary R&D facility in the Orsay campus gathering various scientific communities involved in radiobiology, subatomic physics, instrumentation and particle accelerators around an electron accelerator delivering a high-performance beam with energy up to 70 MeV and later 140 MeV, in order to perform a series of unique measurements and future challenging R&D. In this paper we report the first start-to-end simulations from the RF gun, going through the linac and finally to the different experimental platforms. The beam dynamics simulations have been performed using a concatenation of codes. In particular for the linac the RF-Track code recently developed at CERN will be used and benchmarked. The different working points have been analysed in order to minimise the transverse emittance and the beam energy spread including space charge effects at low electron energies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML079 A Start to End Simulation of the Laser Plasma Wakefield Acceleration Experiment at ESCULAP 1731
SUSPF043   use link to see paper's listing under its alternate paper code  
 
  • K. Wang, C. Bruni, K. Cassou, V. Chaumat, N. Delerue, D. Douillet, S. Jenzer, V. Kubytskyi, P. Lepercq, H. Purwar
    LAL, Orsay, France
  • E. Baynard, M. Pittman
    CLUPS, Orsay, France
  • J. Demailly, O. Guilbaud, S. Kazamias, B. Lucas, G. Maynard, O. Neveu, D. Ros
    CNRS LPGP Univ Paris Sud, Orsay, France
  • D. Garzella
    CEA, Gif-sur-Yvette, France
  • R. Prazeres
    CLIO/ELISE/LCP, Orsay, France
 
  We present a start to end (s2e) simulation of the Laserplasma Wake Field Accelerator (LPWA) foreseen as the ESCULAP project. We use a photo injector to produce a 5 MeV 10 pC electron bunch with a duration of 1 ps RMS, it is boosted to 10 MeV by a S-band cavity and then compressed to 74 fs RMS (30 fs FWHM) by a magnetic compression chicane (dogleg). After the dogleg, a quadrupole doublet and a triplet are utilized to match the Twiss parameters before injecting into the subsequent plasma wakefield. A 40 TW laser is used to excite plasma wakefield in the 10 cm plasma cell. An optimized configuration has been determined yielding at the plasma exit an electron beam at 180 MeV with energy spread of 4.2%, an angular divergence of 0.6 mrad and a duration of 4 fs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML079  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL041 Power Coupler Design for the LUCRECE Project 3732
 
  • H. Guler, D. Auguste, J. Bonis, O. Bouras, M. El Khaldi, W. Kaabi, P. Lepercq
    LAL, Orsay, France
 
  The LUCRECE project aims at developing an elementary RF system (cavity, power source, LLRF and controls) suitable for continuous (CW) operation at 1.3 GHz. This effort is made in the framework of the advanced and compact FEL project LUNEX5 (free electron Laser Using a New accelerator for the Exploitation of X-ray radiation of 5th generation), using superconducting linac technology for high repetition rate and multi-user operation (www.lunex5.com). In this context, based on its large experience on coupler design and RF conditioning, LAL Laboratory is in charge of the design and the fabrication of RF couplers that could operate at up to 15-20 kW in CW mode. For this purpose, geometry based on CORNELL 65kW CW couplers will me modified to fulfil the LCLS2 type cavity with the high necessary coupling level. Electromagnetic simulations and optimisation and associated thermal heating will be discussed. Methods to decrease the thermal impact, and strategy for RF conditioning will be considered.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)