Paper |
Title |
Page |
TUPAL035 |
3D Beam Dynamics Modeling of MEBT for the New LANSCE RFQ Injector |
1081 |
|
- S.S. Kurennoy
LANL, Los Alamos, New Mexico, USA
|
|
|
The new RFQ-based proton injector at LANSCE requires a specialized medium-energy beam transfer (MEBT) after the RFQ at 750 keV due to a following long (~3 m) existing common transfer line that also serves for transporting negative-ion beams to the DTL entrance. The horizontal space for MEBT elements is limited because two beam lines merge at 18-degree angle. The MEBT design developed with envelope codes includes two compact quarter-wave RF bunchers and four short quadrupoles with steerers, all within the length of about 1 m. The beam size in the MEBT is large, comparable to the beam-pipe aperture, hence non-linear 3D field effects at large radii become important. Using CST Studio codes, we calculate buncher RF fields and quadrupole magnetic fields and use them to perform particle-in-cell beam dynamics modeling of MEBT with realistic beam distributions from the RFQ. Our results indicate a significant emittance growth not predicted by standard beam dynamics codes. Its origin was traced mainly to the quadrupole edge fields. Quadrupole design modifications are proposed to improve the MEBT performance.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL035
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|