Author: Krafft, G.A.
Paper Title Page
TUPMF005 Simulation of Inverse Compton Scattering and Its Implications on the Scattered Linewidth 1254
SUSPF014   use link to see paper's listing under its alternate paper code  
 
  • N. Ranjan, B. Terzić
    ODU, Norfolk, Virginia, USA
  • I. Drebot, L. Serafini
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • G.A. Krafft
    JLab, Newport News, Virginia, USA
  • V. Petrillo
    Universita' degli Studi di Milano & INFN, Milano, Italy
 
  Funding: This paper is authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
Compton scattering, though first described some one hundred years ago, has recently experienced a surge of interest due to the search for energy sources that are capable of yielding low emission bandwidths. In particular, the desire for hard x-rays with energies greater than 10 keV has led to increased study of inverse Compton sources. The rise in interest concerning inverse Compton sources has increased the need for efficient models that properly quantify the behavior of scattered radiation given a set of interaction parameters. The current, state-of-the-art, simulations rely of Monte Carlo-based methods, which may fail to properly model collisions of bunches in low-probability regions of the spectrum. Furthermore, the random sampling of the simulations may lead to inordinately high runtimes. Our methods can properly model behaviors exhibited by the collisions by integrating over the emissions of the electrons in the bunch in a lessened amount of time. Analytical simulations of Gaussian laser beams closely verify the behavior predicted by an analytically derived scaling law describing bandwidth of scattered radiation.
Current affiliation of primary author (Nalin Ranjan) is Princess Anne High, Virginia Beach, VA 23452, USA.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK071 Simulation Study of the Magnetized Electron Beam 3395
SUSPF086   use link to see paper's listing under its alternate paper code  
 
  • S.A.K. Wijethunga, J.R. Delayen, G.A. Krafft
    ODU, Norfolk, Virginia, USA
  • J. F. Benesch, F.E. Hannon, G.A. Krafft, M.A. Mamun, M. Poelker, R. Suleiman
    JLab, Newport News, Virginia, USA
 
  Funding: This work is supported by the Department of Energy, Laboratory Directed Research and Development funding, under contract DE-AC05-06OR23177
Electron cooling of the ion beam plays an important role in electron ion colliders to obtain the required high luminosity. This cooling efficiency can be enhanced by using a magnetized electron beam, where the cooling process occurs inside a solenoid field. This paper compares the predictions of ASTRA and GPT simulations to measurements made using a DC high voltage photogun producing magnetized electron beam, related to beam size and rotation angles as a function of the photogun magnetizing solenoid and other parameters.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK026 Mobile Free-Electron Laser for Remote Atmospheric Survey 4351
SUSPF006   use link to see paper's listing under its alternate paper code  
 
  • S. Johnson, G.A. Krafft, B. Terzić
    ODU, Norfolk, Virginia, USA
  • G.A. Krafft
    JLab, Newport News, Virginia, USA
 
  Funding: This paper is authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05- 06OR23177. E.J. was supported by the Virginia Space Grant Consortium, grant number 16-589.
Reliable atmospheric surveys for carbon distributions will be essential to building an understanding of the Earth's carbon cycle and the role it plays in climate change. One of the core needs of NASA 's Active Sensing of CO2 Over Nights, Days and Seasons (ASCENDS) Mission is to advance the range and precision of current remote atmospheric survey techniques. The feasibility of using accelerator-based sources of infrared light to improve current airborne lidar systems has been explored. A literary review has been conducted to asses the needs of ASCENDS versus the current capabilities of modern atmospheric survey technology, and the parameters of a free electron laser (FEL) source were calculated for a lidar system that will meet these needs. By using the "Next Linear Collider" from the Stanford Linear Accelerator Center (SLAC), a mobile FEL-based lidar may be constructed for airborne surveillance. The calculated energy of the lidar pulse is 0.1 joule: this output is a two orders of magnitude gain over current lidar systems, so in principle, the mobile FEL will exceed the needs of ASCENDS. Further research will be required to asses other challenges to mobilizing the FEL technology.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK108 Production of Magnetized Electron Beam from a DC High Voltage Photogun 4567
 
  • M.A. Mamun, P.A. Adderley, J. F. Benesch, D.B. Bullard, J.R. Delayen, J.M. Grames, J. Guo, F.E. Hannon, J. Hansknecht, C. Hernandez-Garcia, R. Kazimi, G.A. Krafft, M. Poelker, R. Suleiman, M.G. Tiefenback, Y.W. Wang, S. Zhang
    JLab, Newport News, Virginia, USA
  • S.A.K. Wijethunga
    ODU, Norfolk, Virginia, USA
 
  Funding: This work is supported by the Department of Energy, Laboratory Directed Research and Development funding, under contract DE-AC05-06OR23177
Bunched-beam electron cooling is a key feature of all proposed designs of the future electron-ion collider, and a requirement for achieving the highest promised collision luminosity. At the Jefferson Lab Electron Ion Collider (JLEIC), fast cooling of ion beams will be accomplished via so-called 'magnetized cooling' implemented using a recirculator ring that employs an energy recovery linac. In this contribution, we describe the production of magnetized electron beam using a compact 300 kV DC high voltage photogun with an inverted insulator geometry, and using alkali-antimonide photocathodes. Beam magnetization was assessed using a modest diagnostic beamline that includes YAG view screens used to measure the rotation of the electron beamlet passing through a narrow upstream aperture. Magnetization results are presented for different gun bias voltages and for different laser spot sizes at the photocathode, using 532 nm lasers with DC and RF time structure. Photocathode lifetime was measured at currents up to 4.5 mA, with and without beam magnetization.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK108  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK110 300 kV DC High Voltage Photogun with Inverted Insulator Geometry and CsK2sb Photocathode 4571
SUSPF028   use link to see paper's listing under its alternate paper code  
 
  • Y.W. Wang, P.A. Adderley, J. F. Benesch, D.B. Bullard, J.M. Grames, F.E. Hannon, J. Hansknecht, C. Hernandez-Garcia, R. Kazimi, G.A. Krafft, G.A. Krafft, M.A. Mamun, G.G. Palacios Serrano, M. Poelker, R. Suleiman, M.G. Tiefenback, S. Zhang
    JLab, Newport News, Virginia, USA
  • G.A. Krafft, S.A.K. Wijethunga
    ODU, Norfolk, Virginia, USA
 
  Funding: This work is supported by the Department of Energy, Laboratory Directed Research and Development funding, under contract DE-AC05-06OR23177
A compact DC high voltage photogun with inverted-insulator geometry was designed, built and operated reliably at 300 kV bias voltage using alkali-antimonide photocathodes. This presentation describes key electrostatic design features of the photogun with accompanying emittance measurements obtained across the entire photocathode surface that speak to field non-uniformity within the cathode/anode gap. A summary of initial photocathode lifetime measurements at beam currents up to 4.5 mA is also presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK110  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)