Author: Krafczyk, G.E.
Paper Title Page
TUPAF075 Design Status of the LBNF/DUNE Beamline 902
 
  • V. Papadimitriou, J.E. Anderson, R. Andrews, J.J. Angelo, V.T. Bocean, C.F. Crowley, A. Deshpande, N. Eddy, K. E. Gollwitzer, S. Hays, P. Hurh, J. Hylen, J.A. Johnstone, P.H. Kasper, T.R. Kobilarcik, G.E. Krafczyk, N.V. Mokhov, D. Pushka, S.D. Reitzner, P. Schlabach, V.I. Sidorov, M. Slabaugh, S. Tariq, L.R. Valerio, K. Vaziri, G. Velev, G.L. Vogel, K.E. Williams, R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
  • C.J. Densham
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
 
  Funding: DOE, contract No. DE-AC02-07CH11359
The Long Baseline Neutrino Facility (LBNF) will utilize a beamline located at Fermilab to provide and aim a wide band beam of neutrinos of sufficient intensity and appropriate energy toward DUNE detectors, placed 4850 feet underground at SURF in South Dakota, about 1,300 km away. The primary proton beam (60-120 GeV) will be extracted from the MI-10 section of Fermilab's Main Injector. Neutrinos are produced after the protons hit a four-interaction length solid target and produce mesons which are subsequently focused by a set of three magnetic horns into a 194 m long helium filled decay pipe where they decay into muons and neutrinos. The parameters of the facility were determined taking into account the physics goals, spatial and radiological constraints, extensive simulations and the experience gained by operating the NuMI facility at Fermilab. The Beamline facility is designed for initial operation at a proton-beam power of 1.2 MW, with the capability to support an upgrade to about 2.4 MW. LBNF/DUNE obtained CD-1 approval in November 2015 and CD-3a approval in September 2016. We discuss here the Beamline design status and the associated challenges.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAG004 Automating Orbit Correction in the Main Injector 8 GeV Line 2070
 
  • K.J. Hazelwood, I. Kourbanis, G.E. Krafczyk, M.-J. Yang
    Fermilab, Batavia, Illinois, USA
 
  The Main Injector 8 GeV line (MI8 line) transports beam from Fermilab's Booster accelerator to either the Booster Neutrino experiments (BNB), the Recycler or the Main Injector. Often the orbit of the beam through the MI8 line differs depending on the beam destination. The beam is collimated in the MI8 line, so increasing intensities and repetition rates make controlling orbits through the collimators a necessity. The current method of regulating the MI8 line orbit with DC corrector settings is insufficient. A system named MITUNE is being developed to sample and categorize all beams through the MI8 line and automatically calculate and apply proper dipole corrector ramps to maintain desired orbits for pulses to any destination.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAG004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML093 New Fast Kicker Results from the Muon g-2 E-989 Experiment at Fermilab 4879
 
  • A.P. Schreckenberger
    The University of Texas at Austin, Austin, Texas, USA
  • D. Barak, C.C. Jensen, G.E. Krafczyk, R.L. Madrak, H. Nguyen, H. Pfeffer, M. Popovic, J.C. Stapleton, C. Stoughton
    Fermilab, Batavia, Illinois, USA
  • A.T. Chapelain, A.A. Mikhailichenko, D. L. Rubin
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • N.S. Froemming
    CENPA, Seattle, Washington, USA
  • J.L. Holzbauer
    UMiss, University, Mississippi, USA
  • A.I. Keshavarzi
    The University of Liverpool, Liverpool, United Kingdom
 
  We describe the installation, commissioning, and characterization of the injection kicker system for the E-989 experiment at Fermilab for a precision measurement of the muon anomalous magnetic moment. Control and monitoring systems have been implemented to acquire and record the waveforms of each kicker pulse, and measurements of various kicker system observables were recorded in the presence of the 1.45 T g-2 storage ring magnetic field. These monitoring systems are necessary to understand the systematic contribution to the measurement of the precession frequency. We examine the dependence of muon capture to kicker field predictions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML093  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)