Author: Koufalis, P.N.
Paper Title Page
WEPMF037 HF Free Bipolar Electro-Polishing Studies on Niobium SRF Cavities at Cornell With Faraday Technology 2443
 
  • F. Furuta, M. Ge, T. Gruber, J.J. Kaufman, P.N. Koufalis, M. Liepe, J. Sears
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • T.D. Hall, M.E. Inman, R. Radhakrishnan, S.T. Snyder, E.J. Taylor
    Faraday Technology, Inc., Clayton, Ohio, USA
 
  Cornell's SRF group and Faraday Technology have been collaborating on two phase-II SBIR projects. One of them is the development and commissioning of a 9-cell scale HF free Bipolar Electro-Polishing (BEP) system. Faraday Technology has upgraded their 1.3 GHz single-cell BEP system for hosting 9-cell cavities. Initial commissioning of the new system was done with a three single-cell cavity string, and high a gradient of 40MV/m was demonstrated during the RF tests at Cornell. After this success with the test string, the 9-cell cavity was processed with the new system at Faraday and RF test was performed at Cornell. Here we report detailed results from these 9-cell scale HF free BEP studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF039 Experimental Results on the Field and Frequency Dependence of the Surface Resistance of Niobium Cavities 2451
 
  • P.N. Koufalis, M. Liepe, J.T. Maniscalco, T.E. Oseroff
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  We investigate the field and frequency dependence of the surface resistance of single-cell niobium cavities as a function of surface treatment at 1.3, 2.6, and 3.9 GHz. The surface resistance is broken down into two parts: the temperature-independent residual resistance and the temperature-dependent BCS resistance. While the low-field BCS resistance is known to vary quadratically with frequency, the exact dependence of the BCS and residual resistances on field at higher frequencies are important topics for further investigation. We offer results on a systematic experimental study of the residual and BCS resistance as a function of frequency and field for clean niobium and high-temperature nitrogen-doped niobium.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF041 Insights into the Role of C, N, and O Introduced by Low Temperature Baking on Niobium Cavity Performance 2455
SUSPL072   use link to see paper's listing under its alternate paper code  
 
  • P.N. Koufalis, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Previous experiments have shown that introducing nitrogen gas during low temperature bakes (120-160 C) of niobium cavities introduces C, N, and O impurities to the first 10-100 nm of the surface. This new treatment results in higher quality factors and even 'anti-Q-slope' in some cases. However, it is not entirely clear the role that each of these impurities plays in the performance enhancement of the cavities. It has been suggested that interstitial N within the first few nm of the surface is solely responsible for the observed enhancement, but little work has been done on the role of C and O. Because both C and O are abundant in much higher quantities than N near the surface, it is important to understand whether they are beneficial or detrimental to cavity performance. We provide further insight into the effects of C and O on cavity performance by baking in an ambient atmosphere rich in CO2 as opposed to N2.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF046 Modeling of the Frequency and Field Dependence of the Surface Resistance of Impurity-Doped Niobium 2471
SUSPL073   use link to see paper's listing under its alternate paper code  
 
  • J.T. Maniscalco, P.N. Koufalis, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  The anti-Q-slope, a field-dependent decrease in surface resistance observed in impurity-doped niobium, has been investigated extensively in 1.3 GHz cavities. New early research into this effect has recently been performed at higher and lower frequencies, revealing an additional dependence on frequency: the anti-Q-slope is stronger at higher frequencies and weaker at lower frequencies. Several models have been proposed to explain the anti-Q-slope, with varying success in this new frequency-dependent regime. In this work, we analyze recent experimental data from a low-temperature-doped 1.3 GHz cavity and a high-temperature nitrogen-doped 2.6 GHz cavity and discuss the implications of these results on the proposed models.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)