Author: Keintzel, J.
Paper Title Page
MOPMF067 Optimized Arc Optics for the HE-LHC 277
 
  • Y.M. Nosochkov, Y. Cai
    SLAC, Menlo Park, California, USA
  • M.P. Crouch, M. Giovannozzi, M. Hofer, J. Keintzel, T. Risselada, E. Todesco, R. Tomás, F. Zimmermann
    CERN, Geneva, Switzerland
  • D. Zhou
    KEK, Ibaraki, Japan
  • L. van Riesen-Haupt
    JAI, Oxford, United Kingdom
 
  Funding: Work supported by the European Commission under Capacities 7th Framework Programme project EuCARD-2, grant agreement 312453, and the HORIZON 2020 project EuroCirCol, grant agreement 654305.
The High Energy LHC (HE-LHC) proton-proton collider is a proposed replacement of the LHC in the existing 27-km tunnel, with the goal of reaching the centre-of-mass beam energy of 27 TeV. The required higher dipole field can be realized by using 16-T dipoles being developed for the FCC-hh design. A major concern is the dynamic aperture at injection energy due to degraded field quality of the new dipole based on Nb3Sn superconductor, the potentially large energy swing between injection and collision, and the slightly reduced magnet aperture. Another issue is the field in quadrupoles and sextupoles at top energy, for which it may be cost-effective, wherever possible, to stay with Nb-Ti technology. In this study, we explore design options differed by arc lattice, for three choices of injection energy, with the goal of attaining acceptable magnet field and maximum injection dynamic aperture with dipole non-linear field errors.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMK002 Integrated Full HE-LHC Optics and Its Performance 348
 
  • M. Hofer
    TU Vienna, Wien, Austria
  • M.P. Crouch, J. Keintzel, T. Risselada, R. Tomás, F. Zimmermann
    CERN, Geneva, Switzerland
  • Y.M. Nosochkov
    SLAC, Menlo Park, California, USA
  • D. Zhou
    KEK, Ibaraki, Japan
  • L. van Riesen-Haupt
    JAI, Oxford, United Kingdom
 
  One possible future hadron collider design investigated in the framework of the Future Circular Collider (FCC) study is the High-Energy LHC (HE-LHC). Using the 16 T dipoles developed for the FCC-hh the center of mass energy of the LHC is set to increase to 27 TeV. To achieve this set energy goal, a new optics design is required, taking into account the constraint from the LHC tunnel geometry. In this paper, two different lattices for the HE-LHC are presented. Initial considerations take into account the physical aperture at the proposed injection energy as well as the energy reach of these lattices. The dynamic aperture at the injection energies is determined using latest evaluations of the field quality of the main dipoles.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMK002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)