Paper | Title | Page |
---|---|---|
TUPMF044 | First Lasing of the CAEP THz FEL Facility Driven by a Superconducting Accelerator | 1349 |
|
||
Funding: Work supported by China National Key Scientific Instrument and Equipment Development Project (2011YQ130018), National Natural Science Foundation of China (11475159, 11505173, 11575264 and 11605190) The stimulated saturation of the terahertz free electron laser at China Academy of Engineering Physics was reached in August, 2017. This THz FEL facility consists of a GaAs photocathode high-voltage DC gun, a superconducting RF linac, a planar undulator and a quasi-concentric optical resonator. The terahertz wave frequency is continuous adjustable from 2 THz to 3 THz. The average power is more than 10 W and the micro-pulse power is more than 0.3 MW. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF044 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAK131 | Investigation of Two-Bunch Train Compression by Velocity Bunching | 3548 |
|
||
Two electron beamlets, also referred as two-bunch train with adjustable time and energy spacing are popular in many applications such as two color FEL and pump-probe experiments. We investigate compression of two-bunch train via velocity bunching scheme in a traveling wave accelerator (TWA) tube by varying the phase of TWA tube in a very large range. Beam dynamics simulations show that when the phase injected into the accelerator tube for the beam is set to ≪-100 degree, velocity bunching occurs in a deep over-compression mode, where two-bunch train is continuously tunable in time and in energy space, and the emittance of each sub-bunch is also preserved. In the experiment, we use energy spectrum and defecting cavity to diagnose the train's energy space and time space respectively, the measurements demonstrated that two-bunch train through deep over-compression scheme is separated both in time and in energy space, which also agree well with the predictions. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK131 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMF083 | Dynamic Simulation for Low Energy Compton Scattering Gamma-Ray Storage Ring | 4271 |
|
||
We have designed a dedicated low-energy electron storage ring to generate gamma-rays based on Compton scattering technique. The natural emittance of the ring is 3.4 nm at 500 MeV beam energy and the ring circumference is about 59 m. The resulting maximum gamma-ray photon energy is about 4 MeV by interacting with ~1 um laser. Due to the large energy loss associated with the gamma-ray photon emission, the electron beam dynamics are greatly affected. We have simulated the whole physics process including Compton scattering, radiation damping and quantum excitation and find that the equilibrium energy spread may be increased by one orders of magnitude depending on the laser parameters. We have studied the dependence of the equilibrium state on the laser intensity and wavelength, and the electron parameters based on our candidate ring lattice. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF083 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMK113 | From Coherent Harmonic Generation to Steady State Microbunching | 4583 |
SUSPF005 | use link to see paper's listing under its alternate paper code | |
|
||
Steady state microbunching (SSMB) is an electron storage ring based scheme proposed by Ratner and Chao to generate high average power narrow band coherent radiation with wavelength ranging from THz to EUV. One key step towards opening up the potential of SSMB is the experimental proof of the SSMB principle. In this paper, the SSMB experiment planned and prepared by a recently established collaboration is presented starting from a modified coherent harmonic generation (CHG). Single particle dynamics of microbunching in an electron storage ring are analyzed. Though oriented for CHG and SSMB, some of the effects analyzed are also important in cases like bunch slicing, bunch compression, FEL beam transport lines etc, in which precise longitudinal phase space manipulations are involved. These dynamics together with some SSMB related collective effects are to be investigated on the storage ring MLS in Berlin. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK113 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMK115 | Optical Cavity R&D for Laser-Electron Interaction Applications | 4587 |
SUSPF032 | use link to see paper's listing under its alternate paper code | |
|
||
Laser-electron Inverse Compton Scattering X-ray source based on optical enhancement cavity is expected to produce higher-flux and better-quality X-rays than conventional sources, in addition, to become more compact, much cheaper than Free Electron Laser and Synchrotron Radiation. One X-ray source named ThomX is under construction at LAL, France. An electron storage ring with 50 MeV, 16.7 MHz electron beam will collide with a few picosecond pulsed laser to produce 1013 photons per second. A prototype cavity with a high finesse (F=25,100) in the picosecond regime is used to perform R & D for ThomX. We obtained 380 kW power stored in the optical cavity and mode instabilities were observed. The EOM-based frequency modulation to measure the finesse, the influence of dust on finesse, high-power experiments and other related issues are mentioned briefly. We will also describe the TTX2 (Tsinghua Thomson Scattering X-ray source) at Tsinghua University which is in design process. TTX2 prefers using an electron storage ring and an optical cavity in order to get high X-ray flux. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK115 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPML092 | Electromagnetic and Mechanical Design of High Gradient S-Band Accelerator in TTX | 4876 |
|
||
Thomson scattering x-ray source is an essential scien-tific research tool in x-ray imaging technology for vari-ous fields. Upgrading plan of replacing the 3-meter S-band linac with a shorter structure operating at higher gradient in Tsinghua Thomson scattering X-ray source (TTX) is undergoing so far, aiming to enhance the accel-erating gradient from 15 MV/m to 30 MV/m. Detailed parameters of couplers and mechanical design of acceler-ation structure are presented in this work. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML092 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPML099 | Phase Extraction and Stabilization for Coherent Pulse Stacking | 4895 |
SUSPL060 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: This work was supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Contract DE-AC02-05CH11231. Coherent pulse stacking (CPS) is a new time-domain coherent addition technique that stacks several optical pulses into a single output pulse, enabling high pulse energy and high average power. We model the CPS as a digital filter in the Z domain, and implement two deterministic algorithms extracting the cavity phase from limited data where only the pulse intensity is available. In a 2-stage 15-pulse CPS system, each optical cavity is stabilized at an individually-prescribed round-trip phase with 0.7 deg and 2.1 deg RMS phase errors for Stage 1 and Stage 2 respectively. Optical cavity phase control with nm accuracy ensures 1.2% intensity stability of the stacked pulse over 12 hours. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML099 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPML100 | A High Voltage Feedforward Subsystem of Low Level RF System for the High Power RF System | 4898 |
SUSPL062 | use link to see paper's listing under its alternate paper code | |
|
||
The Low Level Radio Frequency control (LLRF) system measures the RF signals from the accelerator tube, compares it with the phase reference received from the timing distribution system, and provides the drive signal to the high power RF system to provide synchronized RF voltage to the electron beam. Usually, the LLRF system can achieve a ~50 fs RMS phase jitter which is limited by the microwave devices. The phase noise arise from the high voltage variation of the high power system will significantly increase phase noise from low level RF signal to high power RF. A high voltage feed forward subsystem is proposed to deal with the phase noise caused by the high voltage jitter of the modulator. The demo system is depolyed in Thomson scattering X-ray source (TTX).and the primary experiment result anaylse is discussed. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML100 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPML101 | A Novel Double Sideband-Based Phase Averaging Line for Phase Reference Distribution System | 4901 |
|
||
Coaxial cable based solution is one of the most important scheme in Phase Reference Distribution System. A novel double sideband-based phase averaging line has been developed in Tsinghua accelerator lab. The sender chassis generates the 2856 MHz signal as the forward signal and receives the 2856 MHz signal and the reflected double sideband signal from the receiver. The forward signal is phase-locked with the reference signal, and the forward signal and the sideband signal are adjusted by the FPGA virtual delay line. The preliminary experiments result shows the phase stability can achieve about 1% by signal distorted by the phase shifter. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML101 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |