Author: Huang, K.
Paper Title Page
THPML133 Design and Optimization of the Electron Gun 4995
 
  • K. Huang, T.L. He, Z.L. Ren, D.R. Xu, H. Xu
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  • Y. Chen
    Department of Information Engineering , Anhui Economic Management Cadres' Institute, Hefei, Anhui, People's Republic of China
 
  Funding: Work supported by the National Nature Science Foundation of China under Grant Nos.11375176 and 10875118.
Design of an energy-modified electron gun is of significance to do some research on the properties of Diamond-amplified cathode. Based on the design method of the Pierce electron gun, the optimum parameters of the electron gun have been obtained using the Opera-3D program. And the beam waist's position, the beam current, the beam size and the beam emittance related to the electron bean energy was investigated in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML133  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML136 Study of Secondary Electron Generation and Transport in Diamond 5004
SUSPF025   use link to see paper's listing under its alternate paper code  
 
  • T.L. He, K. Huang, Z.L. Ren, L. Wang, D.R. Xu, H. Xu
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Energetic primary electrons (~ keV) impinging on the diamond film with its both surface under bias field in ~ MV/m, will excite secondary electron (SE) response including SE generation & transport. Although there have been 3D Monte Carlo (MC) simulation to study the two processes, this paper will introduce another method. Based on optical dielectric model, 3D MC simulation was implemented to study the generation process, and SE generation function was obtained by fitting the calculations. Using this function, the diffusion-drift equation of charge carriers (electron and hole) can be solved in 1D for the transport process, and the variation of SE depth distribution with time can be obtained.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML136  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)