Author: Holmes, D.
Paper Title Page
TUPMF032 RF Conceptual Design of Normal Conducting Cavity for an eRHIC Rapid Cycling Synchrotron 1316
 
  • B. P. Xiao, M. Blaskiewicz, J.M. Brennan, D. Holmes, K.S. Smith, T. Xin, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work is supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE.
The Rapid Cycling Synchrotron (RCS) for the eRHIC Ring-Ring design will provide on energy injection (up to 18 GeV) of high charge, polarized electron bunches to the eRHIC electron storage ring. The RF system comprises a large number of 563MHz fundamental cavities, providing up to 45MV per turn. The cavities will operate in pulsed mode with <20% duty factor, at a repetition rate of 1 Hz. In this paper we report the conceptual RF design of the cavity.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF012 Power Requirement and Preliminary Coupler Design for the eRHIC Crab Cavity System 2394
 
  • S. Verdú-Andrés, I. Ben-Zvi, D. Holmes, Q. Wu
    BNL, Upton, Long Island, New York, USA
  • I. Ben-Zvi
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven Science Associates LLC under contract no. DE-SC0012704 with the U.S. Department of Energy.
Crab cavities are deflecting cavities operated in such a way that the bunch center is in synchronism with the zero-crossing kick voltage. In that case, beam loading is zero for an on-axis beam. The crab cavity system of the future electron-ion collider eRHIC will manipulate 275 GeV proton beams. At high energies, the beam offset can be as large as 2 mm (including mechanical and electrical offset tolerances). The beam loading resulting from such offset can greatly incur in large power requirements to the RF amplifier. The choice of external Q for the Fundamental Power Coupler (FPC) is critical to limit the power requirement to practical values. The loaded Q of the eRHIC crab cavities is mainly governed by the external Q of the FPC, so the external Q will also define the cavity bandwidth and thus the tuning requirements to counteract frequency transients from external perturbations. This paper discusses the choice of external Q for the FPC of the eRHIC crab cavities and introduces the design of a preliminary FPC antenna concept that would provide the appropriate external Q.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)