Author: Holloway, M.A.
Paper Title Page
MOPML052 The Path to Compact, Efficient Solid-State Transistor-Driven Accelerators 520
 
  • D.C. Nguyen, C.E. Buechler, G.E. Dale, R.L. Fleming, M.A. Holloway, J.W. Lewellen, D. Patrick
    LANL, Los Alamos, New Mexico, USA
  • V.A. Dolgashev, E.N. Jongewaard, E.A. Nanni, J. Neilson, A.V. Sy, S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  Funding: Research presented in this work is supported by (LANL) Laboratory Directed Research and Development 20170521ER and by (SLAC) Department of Energy contract DE-AC02-76SF00515.
Small, lightweight, few-MeV electron accelerators that can operate with low-voltage power sources, e.g., solid-state transistors running on 50 VDC, instead of high-voltage klystrons, will provide a new tool to enhance existing applications of accelerators as well as to initiate new ones. Recent advances in gallium nitride (GaN) semiconductor technologies * have resulted in a new class of high-power RF solid-state devices called high-electron mobility transistors (HEMTs). These HEMTs are capable of generating a few hundred watts at S-, C- and X-bands at 10% duty factor. We have characterized a number of GaN HEMTs and verified they have suitable RF characteristics to power accelerator cavities **. We have measured energy gain as a function of RF power in a single low-beta C-band cavity. The HEMT powered RF accelerators will be compact and efficient, and they can operate off the low-voltage DC power buses or batteries. These all-solid-state accelerators are also more robust, less likely to fail, and are easier to maintain and operate. In this poster, we present the design of a low-beta, 5.1-GHz cavity and beam dynamics simulations showing continuous energy gain in a ten-cavity C-band prototype.
* See for example, http://www.wolfspeed.com/downloads/dl/file/id/463/product/174/cghv59350.pdf
** J.W. Lewellen et al., Proceedings of LINAC2016, Paper MO3A03
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF090 Linac Design Elements for Spaceborne Accelerators 4291
 
  • J.W. Lewellen, C.E. Buechler, G.E. Dale, M.A. Holloway, D.C. Nguyen, D. Patrick
    LANL, Los Alamos, New Mexico, USA
  • V.A. Dolgashev, E.N. Jongewaard, J. Neilson, S.G. Tantawi
    SLAC, Menlo Park, California, USA
  • J-.M. Lauenstein
    NASA Goddard Space Flight Center, Greenbelt, USA
 
  Funding: Los Alamos National Laboratory LDRD and Program Development
Los Alamos National Laboratory, in collaboration with SLAC and Goddard Space Flight Center, have begun developing a high-duty-factor, MeV-range linear accelerator intended for use on satellites, specifically to probe the magnetosphere-ionosphere linkage. The design makes use of low-beta C-band cavities operating at moderate gradients, individually powered by 500-W RF amplifier chips. We present the current state of the design, and technology maturation efforts including RF amplifier performance studies, cavity tuner design and an initial acceleration test using a DC beam source and single RF cavity.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF090  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)