Author: Hidaka, Y.
Paper Title Page
TUPMK014 Dipole Fringe Field Analysis of the NSLS-II Storage Ring 1519
 
  • J. Choi, Y. Hidaka, T.V. Shaftan, C.J. Spataro, G.M. Wang
    BNL, Upton, Long Island, New York, USA
 
  Funding: DOE Contract No. DE-SC0012704
In the NSLS-II storage ring, the effect of the dipole fringe field is not negligible and was considered already at the design phase. Especially in the vertical direction, the standard simulation codes are using the parameter called FINT (fringe Field INTegral) and, if there is no specific information, it is usually set to 0.5 which is considered as the reasonable average. With the hall-probe measurement data of the NSLS-II storage ring dipoles, we evaluated measured FINTs and applied them to the beam simulation. The paper shows the resulting FINTs and their effects.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMK014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMK018 Round Beam Studies at NSLS-II 1529
 
  • Y. Hidaka, W.X. Cheng, Y. Li, T.V. Shaftan, G.M. Wang
    BNL, Upton, Long Island, New York, USA
 
  Funding: The study is supported by U.S. DOE under Contract No. DE-AC02-98CH10886.
Instead of typical flat beam, some synchrotron light us-ers prefer round beam, i.e., with equal horizontal and vertical emittance, for various reasons (e.g., simplified optics, smaller fraction of photons getting discarded, better phase space match between photon and e-beam). Several future upgrade storage rings such as APS-U, ALS-U, and SLS-2 currently plan to operate in round beam mode. We report our beam study results on round beam operating at NSLS-II by driving linear difference cou-pling resonance.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMK018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF017 Correction of ID-Induced Transverse Linear Coupling at NSLS-II 1856
 
  • Y. Hidaka, Y. Li, T.V. Shaftan, T. Tanabe, Y. Tian, G.M. Wang
    BNL, Upton, Long Island, New York, USA
 
  Funding: The study is supported by U.S. DOE under Contract No. DE-AC02-98CH10886.
Sizeable lifetime jumps have been observed sporadically since March 2016 at NSLS-II. These jumps were found to coincide with insertion device (ID) gap motions. Particularly, one of the in-vacuum undulators (IVUs) at Cell 17 was discovered to have large localized skew quadrupole component variation with gap. To allow the machine to operate stably in the low-emittance mode, a global coupling feedforward system has been recently implemented and successfully deployed. After installation of a new additional skew quadrupole, coupling compensation of this ID is now performed by a local coupling feedforward system. Furthermore, the maximum gap limit of all the existing IVUs has been decreased from 40 mm to 25 mm to limit the skew component variation during user operation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)