Author: He, D.H.
Paper Title Page
THPMK053 Simulation for LCLS-II Hard X-ray Self Seeding Scheme 4406
 
  • C. Yang, Y. Feng, J. Krzywinski, T.O. Raubenheimer, C.-Y. Tsai, J. Wu, M. Yoon, G. Zhou
    SLAC, Menlo Park, California, USA
  • H.X. Deng
    SINAP, Shanghai, People's Republic of China
  • D.H. He
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  • Y. Hong, B. Yang
    University of Texas at Arlington, Arlington, USA
  • X.F. Wang
    CIAE, Beijing, People's Republic of China
  • M. Yoon
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • G. Zhou
    IHEP, Beijing, People's Republic of China
 
  Funding: The work was supported by the US Department of Energy (DOE) under contract DE-AC02-76SF00515 and the US DOE Office of Science Early Career Research Program grant FWP-2013-SLAC-100164.
Typical SASE FELs have poor temporal coherence because of starting from shot noise. Self-seeding scheme is an approach to improve the longitudinal coherence. The single crystal monochromator self-seeding has been in successful operation in LCLS. For the high repetition rate LCLS-II machine, for damage consideration, it was initially proposed to have a two-stage self-seeding scheme, yet we have found the two-stage self-seeding scheme has no advantage over one-stage self-seeding scheme. In this paper, we investigate the optimal self-seeding configuration of LCLS-II for different photon energies, and present a comparison between one-stage and two-stage self-seeding scheme of LCLS-II.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK055 Self Seeding Scheme for LCLS-II-HE 4414
 
  • C. Yang, Y. Feng, J. Krzywinski, T.O. Raubenheimer, C.-Y. Tsai, J. Wu, M. Yoon, G. Zhou
    SLAC, Menlo Park, California, USA
  • H.X. Deng, X.F. Wang
    SINAP, Shanghai, People's Republic of China
  • D.H. He
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  • Y. Hong, B. Yang
    University of Texas at Arlington, Arlington, USA
  • M. Yoon
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • G. Zhou
    IHEP, Beijing, People's Republic of China
 
  Funding: The work was supported by the US Department of Energy (DOE) under contract DE-AC02-76SF00515 and the US DOE Office of Science Early Career Research Program grant FWP-2013-SLAC-100164.
Self-seeding is a reliable approach to generate fully coherent FEL pulses. Hard X-ray self-seeding can be realized by using a single crystal in Bragg transmission geometry. However, for a high repetition rate machine, the heat load on the crystal may become an issue. In this paper, we will study the facility performance of LCLS-II-HE by numerical simulations, and discuss the heat load and optimal undulator baseline configuration of LCLS-II-HE self-seeding scheme, and study the emittance tolerance of the LCLS-II-HE.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)