Author: Hassanzadegan, H.
Paper Title Page
WEPAF087 The First Experience and Results of Beam Diagnostics Deployment at the ESS Accelerator 2054
 
  • V. Grishin, E.C. Bergman, B. Cheymol, C.S. Derrez, T.J. Grandsaert, H. Hassanzadegan, A. Jansson, H. Kocevar, Ø. Midttun, S. Molloy, J. Norin, T.J. Shea, C.A. Thomas
    ESS, Lund, Sweden
  • W. Ledda
    Vitrociset s.p.a, Roma, Italy
  • F. Senée, O. Tuske
    CEA/IRFU, Gif-sur-Yvette, France
 
  The European Spallation Source (ESS) will produce neutrons for science by subjecting a tungsten target to the high-intensity proton beam from a superconducting linear accelerator. A complete suite of beam diagnostics will enable tuning, monitoring and protection of the accelerator during commissioning, studies and operation. As an initial step toward neutron production, the Ion Source and the 75 keV Low Energy Transport Line is installed on the ESS site in Lund, Sweden. To support the commissioning and characterization of this first beam-producing system, a subset of the full diagnostics suite is deployed. This includes the following equipment: a faraday cup, current transformers, an emittance measurement unit, beam-induced fluorescence monitors, and a doppler-shift spectroscopy system. All aspects of the deployment experience, from acceptance testing through installation, verification, and commissioning will be presented.
*Beam Instrumentation
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF087  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF088 Machine Protection Features of the ESS Beam Current Monitor System 2058
 
  • H. Hassanzadegan, E. Bargalló, S.G. Gabourin, T. Korhonen, S. Kövecses de Carvalho, A. Nordt, T.J. Shea
    ESS, Lund, Sweden
  • M. Mohammednezhad
    Sigma Connectivity Engineering, Lund, Sweden
  • M. Werner
    DESY, Hamburg, Germany
 
  The BCM system of the European Spallation Source includes several machine protection features to ensure that the actual beam parameters will be consistent with the selected beam and destination modes. Differential current measurements with several ACCT pairs are foreseen to detect beam losses particularly in the low-energy linac where Beam Loss Monitors cannot be used. The ACCTs will also be used to check that no beam will be present in the sections downstream of a temporary beam dump. These measurements will then be used to stop the beam shortly after an abnormal condition has been detected by the BCM system. This will require some customized interfaces with the Timing System and the Machine Protection System as well as an optical interface for differential current measurement over large distances. Automatic setting of the machine protection thresholds and masking/unmasking of the interlocks based on the beam and destination modes are among the technical complexities. This paper gives an overview of the design including the most recent updates and discusses in more details the machine protection features of the BCM system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF088  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)