Paper |
Title |
Page |
MOPMF062 |
Upgrade of the Dilution System for HL-LHC |
261 |
|
- C. Wiesner, W. Bartmann, C. Bracco, M. Calviani, E. Carlier, L. Ducimetière, M.I. Frankl, M.A. Fraser, S.S. Gilardoni, B. Goddard, T. Kramer, A. Lechner, N. Magnin, A. Perillo-Marcone, T. Polzin, E. Renner, V. Senaj
CERN, Geneva, Switzerland
|
|
|
The LHC Beam Dump System is one of the most critical systems for reliable and safe operation of the LHC. A dedicated dilution system is required to sweep the beam over the front face of the graphite dump core in order to reduce the deposited energy density. The High Luminosity Large Hadron Collider (HL-LHC) project foresees to increase the total beam intensity in the ring by nearly a factor of two, resulting in a correspondingly higher energy deposition in the dump core. In this paper, the beam sweep pattern and energy deposition for the case of normal dilution as well as for the relevant failure cases are presented. The implications as well as possible mitigations and upgrade measures for the dilution system, such as decreasing the pulse-generator voltage, adding two additional kickers, and implementing a retrigger system, are discussed.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF062
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPAF025 |
Multi-turn Study in FLUKA for the Design of CERN-PS Internal Beam Dumps |
724 |
|
- J.A. Briz Monago, M. Calviani, F. Cerutti, J.J. Esala, S.S. Gilardoni, F.-X. Nuiry, G. Romagnoli, G. Sterbini, V. Vlachoudis
CERN, Geneva, Switzerland
|
|
|
The CERN Proton-Synchrotron (PS) accelerator is currently equipped with two internal beam dumps in operation since the 1970's. An upgrade is required to be able to withstand the beams that will be produced after the end of the LIU (LHC Injector Upgrade) project. For the design of the new dumps, the interaction and transport of beam and all secondary particles generated has been simulated using FLUKA. The working principle of the internal beam dump in the PS ring is very peculiar with respect to the other dumps in the CERN accelerator complex. A moving dump intercepts the circulating beam during few milliseconds like a fast scraper. The moving dump shaving the beam, the multi-turn transport of beam particles in the PS accelerator and a time-dependent energy deposition in the dump were modeled. The methodology and the results obtained in our studies for the dump core and downstream equipment will be reported in this contribution.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF025
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPAK091 |
Design of the New Proton Synchrotron Booster Absorber Scraper (PSBAS) in the Framework of the Large Hadron Collider Injection Upgrade (LIU) Project |
3444 |
|
- L. Teofili, M. Migliorati
Sapienza University of Rome, Rome, Italy
- J.A. Briz Monago, M. Calviani, N. Chritin, J.J. Esala, S.S. Gilardoni, I. Lamas Garcia, J. Maestre, T. Polzin, T.L. Rijoff
CERN, Geneva, Switzerland
- T.L. Rijoff
TU Darmstadt, Darmstadt, Germany
|
|
|
The Large Hadron Collider (LHC) Injector Upgrade (LIU)Project at CERN calls for increasing beam intensity for the LHC accelerator chain. Some machine components will not survive the new beam characteristics and need to be rebuilt for the new challenging scenario. This is particularly true for beam intercepting devices (BIDs) such as dumps, collimators, and absorber/scrapers, which are directly exposed to beam impacts. In this context, this work summarizes conceptual design studies on the new Proton Synchrotron Booster (PSB) Absorber/Scraper (PSBAS), a device aimed at cleaning the beam halo at the very early stage of the PSB acceleration. This paper outlines the steps performed to fulfil the component design requirements. It discusses thermo-mechanical effects as a consequence of the beam-matter collisions, simulated with the FLUKA Monte Carlo code and ANSYS finite element software; and the impedance minimization study performed to prevent beam instabilities and to reduce RF-heating on the device.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK091
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPAK092 |
Analysis on the Mechanical Effects Induced by Beam Impedance Heating on the HL-LHC Target Dump Injection Segmented (TDIS) Absorber |
3448 |
|
- L. Teofili, M. Migliorati
Sapienza University of Rome, Rome, Italy
- M. Calviani, D. Carbajo Perez, S.S. Gilardoni, F. Giordano, I. Lamas Garcia, G. Mazzacano, A. Perillo-Marcone
CERN, Geneva, Switzerland
|
|
|
The High Luminosity Large Hadron Collider (HL-LHC) Project at CERN calls for increasing beam brightness and intensity. In such a scenario, critical accelerator devices need to be redesigned and rebuilt. Impedance is among the design drivers, since its thermo-mechanical effects could lead to premature device failures. In this context, the current work reports the results of a multiphysics study to assess the electromagnetic and thermo-mechanical behaviour of the Target Dump Injection Segmented (TDIS). It first discusses the outcomes of the impedance analysis performed to characterise the resistive wall and the high order resonant modes (HOMs) trapped in the TDIS structures. Then, their RF-heating effects and the related temperature distribution are considered. Finally, mechanical stresses induced by thermal gradients are studied in order to give a final validation on the design quality.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK092
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|