Paper | Title | Page |
---|---|---|
THPMF006 | Control of the Nonlinear Dynamics for Medium Energy Synchrotron Light Sources | 4037 |
|
||
MAX-IV has introduced a paradigm shift in the design philosophy for the "Engineering-Science" in the quest for a diffraction limited Synchrotron Light Source. Similarly, SLS-2 has introduced a systematic method for controlling the Linear Optics beyond some 20 years of TME inspired paper designs; by introducing Reverse Bends to disentangle dispersion and focusing, which enables Longitudinal Gradient Bends to efficiently reduce the emittance. Similarly, we outline a systematic approach for how to control the Nonlinear Dynamics for these systems, by a method that was pioneered for the conceptual design of the Swiss Light Source in the mid-1990s; subsequently benchmarked and validated by the commissioning. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF006 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMF009 | Lattice Options for DIAMOND-II | 4050 |
|
||
Funding: Diamond Light Source Ltd Generalized MBA (Multi-Bend-Achromat) Chasman-Green type lattices, with a low-dispersion mid-straight, have been studied and refined by pursuing a generalized Higher Order Achromat to control the non-linear dynamics to obtain a robust design. New candidate lattice have been produced aiming for a horizontal emittance of 150 pm×rad for off-axis injection and 75 pm×rad for on-axis, the latter making use of reverse bends. The results of these studies and evaluations have been summarized in this paper. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF009 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMF020 | A 4th Generation Light Source for South-East Europe | 4084 |
|
||
In Europe, most of the Synchrotron Light Sources are located in the middle, west and northern regions while the south-east is still lacking any major project. Hence a new initiative has been set up to propose the construction of a 4th Generation Light Source in that region. Design requirements limit the beam energy between 2.5 GeV to 3 GeV, the circumference is limited to 350 m, the emittance should be smaller than 250 pm rad and at least 14 to 16 straights have to be available for the users. Several mag-net configurations have been investigated and the results revealed that the HMBA lattice can fully meets the requirements and is therefore proposed for the Light Source in the SEE-region of Europe. These studies show that for a 4th Generation Light Source with energies up to 3 GeV a circumferences of 350 m will be adequate. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF020 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |