Paper | Title | Page |
---|---|---|
MOPML049 | Generation of 1-MeV Quasi-Monochromatic Gamma-Rays for Precise Measurement of Delbrück Scattering by Laser Compton Scattering | 508 |
|
||
Delbrück scattering is the elastic scattering of photons by the electromagnetic field of an atomic nucleus, as a consequence of vacuum polarization. The isolated measurement of Delbrück scattering has not been performed because of interference with other elastic scattering processes. It was recently discovered that, using linearly polarized photons, Delbrück scattering can be measured nearly independently of the other scattering processes*. In order to perform a proof of principle experiment, a quasi-monochromatic gamma-ray beam with a maximum photon energy of 1 MeV has been generated at the UVSOR facility by colliding a CO2 laser with a 750-MeV electron beam. A preliminary experiment has been performed with 0.5-W laser power and 1-mA electron beam current. As a result, the measured gamma-ray flux was evaluated as 0.0006 photon/eV/mA/W/s around the peak energy of 1 MeV. If we accept 20 percent energy spread, in case of a 100-W CO2 laser colliding with a 300 mA electron beam, approximately 4 x 106-photons/s gamma-rays could be obtained. This flux is sufficiently high for the proof of principle experiment.
*J.K. Koga and T. Hayakawa, Phys. Rev. Lett. 118, 204801 (2017). |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML049 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAK031 | Suppression of Longitudinal Coupled Bunch Instability by Harmonic Cavity in UVSOR Electron Storage Ring | 3280 |
|
||
In the UVSOR electron storage ring, which is dedicated for a VUV synchrotron radiation light source, a longitudinal coupled bunch instability (LCBI) is observed in multi-bunch operation. To suppress the LCBI, we routinely operate a third harmonic cavity (HCV) in a passive mode. By properly tuning HCV, the instability is almost completely suppressed. Because of the lower beam energy (750 MeV) and brilliant beam emittance (17.5 nm-rad), the Touschek effect becomes severe in the UVSOR. To guarantee enough beam lifetime, we also apply HCV for lengthening the bunch. The suppression of the instability and increasing the beam lifetime are crucial benefits by HCV for the UVSOR. However, not only the origin of the LCBI but also the Landau damping effect by HCV has not been understood systematically yet. We have noticed that one of the HOMs at HCV itself could cause the LCBI and observed the behavior of the instability, which strongly depends on the beam current. From the experiment we have discussed the cause of the instability with the HOM theory. We have also tried to observe synchrotron tune spread and discussed a competition between the Landau damping and the instability growth.
Present affiliation of the first auther : Karlsruhe Institute of Technology |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK031 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMF069 | Perturbation to Stored Beam by Pulse Sextupole Magnet and Disturbance of the Sextupole Magnetic Field in Aichi Synchrotron Radiation Center | 4232 |
|
||
In the Aichi synchrotron radiation center (Aichi-SR), a pulse sextupole magnet (PSM) has been installed as a pulse magnet for beam injection. This leads to the injection scheme without using a bump orbit and stable supply of the synchrotron radiation. In Aichi-SR we have performed usual injection scheme with 4 kicker magnets and making the bump. Because the circumference of the Aichi-SR is only 72 m, 3 beam lines are inside the bump. The Aichi-SR has performed top-up operation since its public open, so it is a crucial subject to eliminate the disturbance of the synchrotron radiation during the injection. We have installed the PSM in 2015 and developed the beam study continuously. At present, however, a perturbation to the stored beam by the PSM still has been observed and is not acceptable. We have performed beam diagnostic experiment and concluded that an additional dipole kick affects the beam. From the magnetic field measurement data, we have discussed the source of the additional kick; most likely is an eddy current on the Ti coating inside the ceramics duct of the PSM. The beam diagnostics experiment and the magnetic field measurement will be discussed in the presentation.
Present affiliation of the first auther : Karlsruhe Institute of Technology |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF069 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |