Paper |
Title |
Page |
MOPMF054 |
Comparison of Different Transverse Emittance Measurement Techniques in the Proton Synchrotron Booster |
232 |
|
- G.P. Di Giovanni, S.C.P. Albright, V. Forte, M.A. Fraser, G. Guidoboni, B. Mikulec, F. Roncarolo, A. Santamaría García
CERN, Geneva, Switzerland
|
|
|
The measurement of the transverse emittance in an accelerator is a crucial parameter to evaluate the performance of the machine and to understand beam dynamics processes. In recent years, controlling and understanding the emittance became particularly relevant in the Proton Synchrotron Booster (PSB) at CERN as part of the LHC Injectors Upgrade (LIU). The LIU project is a necessary step to achieve the goals of the High-Luminosity LHC project. In this framework, an accurate and reliable emittance measurement of high brightness beams is mandatory to study the brightness reach of the LHC injectors. In the PSB there are two main instruments available for emittance measurements: wire scanners and secondary-emission (SEM) grids. In this paper emittance measurements performed during the 2017 physics run with these two systems are compared, taking into account various systematic error sources.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF054
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
MOPMF062 |
Upgrade of the Dilution System for HL-LHC |
261 |
|
- C. Wiesner, W. Bartmann, C. Bracco, M. Calviani, E. Carlier, L. Ducimetière, M.I. Frankl, M.A. Fraser, S.S. Gilardoni, B. Goddard, T. Kramer, A. Lechner, N. Magnin, A. Perillo-Marcone, T. Polzin, E. Renner, V. Senaj
CERN, Geneva, Switzerland
|
|
|
The LHC Beam Dump System is one of the most critical systems for reliable and safe operation of the LHC. A dedicated dilution system is required to sweep the beam over the front face of the graphite dump core in order to reduce the deposited energy density. The High Luminosity Large Hadron Collider (HL-LHC) project foresees to increase the total beam intensity in the ring by nearly a factor of two, resulting in a correspondingly higher energy deposition in the dump core. In this paper, the beam sweep pattern and energy deposition for the case of normal dilution as well as for the relevant failure cases are presented. The implications as well as possible mitigations and upgrade measures for the dilution system, such as decreasing the pulse-generator voltage, adding two additional kickers, and implementing a retrigger system, are discussed.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF062
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
MOPMF063 |
Asynchronous Beam Dump Tests at LHC |
265 |
|
- C. Wiesner, W. Bartmann, C. Bracco, E. Carlier, L. Ducimetière, M.I. Frankl, M.A. Fraser, B. Goddard, C. Heßler, T. Kramer, A. Lechner, N. Magnin, V. Senaj, D. Wollmann
CERN, Geneva, Switzerland
|
|
|
The detailed understanding of the beam-loss pattern in case of an asynchronous beam dump is essential for the safe operation of the future High Luminosity LHC (HL-LHC) with nearly twice the nominal LHC beam intensity, leading to correspondingly higher energy deposition on the protection elements. An asynchronous beam dump is provoked when the rise time of the extraction kickers is not synchronized to the 3 us long particle-free abort gap. Thus, particles that are not absorbed by dedicated protection elements can be lost on the machine aperture. Since asynchronous beam dumps are among the most critical failure cases of the LHC, experimental tests at low intensity are performed routinely. This paper reviews recent asynchronous beam dump tests performed in the LHC. It describes the test conditions, discusses the beam-loss behaviour and presents simulation and measurement results. In particular, it examines a test event from May 2016, which led to the quench of four superconducting magnets in the extraction region and which was studied by a dedicated beam experiment in December 2017.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF063
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPAF027 |
CERN PS Kicker for Proton Injection: from Beam-Based Waveform Measurements to Hardware Improvements |
732 |
|
- V. Forte, A. Ferrero Colomo, M.A. Fraser, T. Kramer
CERN, Geneva, Switzerland
|
|
|
For 2017 operation, the termination mode of the CERN Proton Synchrotron (PS) horizontal injection kicker was permanently changed to short-circuited, to be compliant with the future performances requested by the LHC Injectors Upgrade (LIU) project. An extensive campaign of measurements was performed through a dedicated beam-based technique. The measurements identified possibilities for optimisation of the kicker system and were fundamental to properly tune the PSpice simulation model of the kicker, as well as for validating the hardware changes. The model was finally used to estimate the horizontal emittance growth for the future injection schemes in the PS.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF027
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPAF032 |
Beam Transfer Line Design to the SPS Beam Dump Facility |
751 |
|
- Y. Dutheil, J. Bauche, M. Calviani, L.A. Dougherty, M.A. Fraser, B. Goddard, C. Heßler, J. Kurdej, E. Lopez Sola
CERN, Geneva, Switzerland
|
|
|
Studies for the SPS Beam Dump Facility (BDF) are ongoing within the scope of the Physics Beyond Collider project. The BDF is a proposed fixed target facility to be installed in the SPS North Area, to accommodate the SHiP experiment (Search for Hidden Particles), which is most notably aiming at studying hidden sector particles. This experiment requires a high intensity slowly extracted 400 GeV proton beam with 4·1013 protons per 1 s spill to achieve 4·1019 protons on target per year. The extraction and transport scheme will make use of the first 600 m of the existing North Area extraction line. In this paper, we will present the design of the additional 600 m of transfer line towards BDF branching off from the existing line and discuss the detailed design of the BDF beam line, its components and optics. We present the latest results on the study and design of a new laminated Lambertson splitter magnet to provide fast switch between the current North Area experiments and the BDF. The latest specification of a dipole dilution system used to reduce the local peak power of the beam on the target is also presented.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF032
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPAF033 |
Beam Optics Studies for BDF and for Tests of a Prototype Target |
754 |
|
- C. Heßler, M. Calviani, Y. Dutheil, M.A. Fraser, B. Goddard, V. Kain, E. Lopez Sola, F.M. Velotti
CERN, Geneva, Switzerland
|
|
|
Within the frame of the Physics Beyond Collider project a new fixed target facility at the SPS North Area, the so-called Beam Dump Facility (BDF), is under study. BDF requires a high intensity slowly extracted 400 GeV proton beam with 4·1013 protons per 1 s spill to achieve 4·1019 protons on target per year. This results in an exceptionally high average beam power of 355 kW on the target, which is a major challenge. To validate the target design, a test of a prototype target is planned for 2018 at an existing North Area beam line. A large part of this beam line is in common with the future BDF beam line with comparable beam characteristics and several measurement campaigns were performed in 2017 to study the optics of the line in preparation for the test. The intrinsic characteristics of the slow extraction process make the precise characterisation of the beam reaching the target particularly challenging. This paper presents beam and lattice characterisation methods and associated measurement results.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF033
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPAF035 |
Observations of SPS Slow-Extracted Spill Quality Degradation and Possible Improvements |
761 |
|
- F.M. Velotti, H. Bartosik, K. Cornelis, M.A. Fraser, B. Goddard, S. Hirlaender, V. Kain, O. Michels, M. Pari
CERN, Geneva, Switzerland
|
|
|
The SPS delivers slow extracted proton and heavy ion spills of several seconds to the North Area fixed target experiments with a very high duty factor. Reduced machine reproducibility due to magnetic history and power supply ripples on the main circuits lead however to frequent degradation of the spill duty factor. In this paper, the measured effect of the SPS magnetic history on spill quality and principal machine parameters is presented. Another detailed measurement campaign was aimed at characterising the frequency content and response of the spill to noise on the main power supplies ripples. The main findings of this study will also be reported. Finally, simulations of possible improvements based on the data acquired are discussed, as well as an extrapolation to the possible spill quality after the implementation of the improvements.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF035
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPAF042 |
Characterization of the Beam Energy Spread at the REX/HIE-ISOLDE Linac |
787 |
|
- M.L. Lozano, N. Bidault, E. Fadakis, M.A. Fraser, E. Matli, J.A. Rodriguez
CERN, Geneva, Switzerland
|
|
|
ISOLDE is an on-line radioactive isotope separator located at CERN that works by colliding protons accelerated in the PS Booster into a fixed target and by separating the resultant ionized isotopes using a magnetic separator. The completion of the HIE-ISOLDE superconducting linac allows the acceleration of these ions to energy levels that were not reachable before, opening the door to new experiments in different fields. These experiments often have special requirements in terms of beam intensity and purity, transverse emittance or energy spread. A possible way to reduce the energy spread of the beam delivered to the experimental stations is to use one or more of the superconducting cavities as bunchers. The main results of several tests conducted during the last beam commissioning campaign prove that this mode of operation is feasible and will be presented in this paper.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF042
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPAF050 |
Beam Dynamics Simulations of the Effect of Power Converter Ripple on Slow Extraction at the CERN SPS |
818 |
|
- J. Prieto, M.A. Fraser, B. Goddard, V. Kain, L.S. Stoel, F.M. Velotti
CERN, Geneva, Switzerland
|
|
|
The SPS provides slowly extracted protons at 400 GeV/c to CERN's North Area Fixed Target experiments over spills of duration from 1-10 seconds. Low frequency ripple on the current in the main magnets originating from their power converters is a common issue that degrades the slow-extracted spill quality. In order to better understand how the stability of the power converters affects losses, beam emittance and spill quality, particle tracking simulations were carried out using MAD-X and compared to measurements, with the impact of each magnet circuit investigated systematically. The implications for the performance of the SPS slow extraction are discussed.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF050
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPAF051 |
Investigating Beam Loss Reduction with Octupoles During Slow Extraction in the CERN SPS |
822 |
SUSPF060 |
|
|
- L.S. Stoel, M. Benedikt, M.A. Fraser, B. Goddard
CERN, Geneva, Switzerland
- K.A. Brown
BNL, Upton, Long Island, New York, USA
|
|
|
Several different methods for reducing beam loss during resonant slow extraction at the CERN Super Proton Synchrotron (SPS) are being studied. One of these methods is the use of multipoles to manipulate the separatrices in order to reduce the fraction of protons hitting the thin wires of the electrostatic extraction septum (ES). In this paper the potential of using octupoles for this purpose is explored. Beam dynamics simulations using both a simplified model and full 6D tracking in MAD-X are presented. The performance reach of such a concept at the SPS is evaluated and the potential of future machine development studies using the octupoles already installed is discussed.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF051
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPAF052 |
Effects of Electrostatic Septum Alignment on Particle Loss During Slow Extraction at CERN SPS |
826 |
|
- J. Prieto, Y. Dutheil, M.A. Fraser, B. Goddard, V. Kain, L.S. Stoel, F.M. Velotti
CERN, Geneva, Switzerland
- M.A. Kagan
SLAC, Menlo Park, California, USA
|
|
|
Slow extraction is an intrinsically lossy process that splits the beam with an electrostatic septum (ES), employing a thin-wire array to delimit the high electric field region that deflects the beam into the extraction channel. At CERN's Super Proton Synchrotron (SPS) the ES is over 16 m long and composed of 5 separate units containing separate wire-arrays that can be moved independently. The tanks are all mounted on a single support structure that can move the ensemble coherently. As a result, the large number of positional degrees of freedom complicates the alignment procedure in operation. Obtaining and maintaining accurate alignment of the ES with the beam is therefore crucial for minimising beam loss. In this paper, we investigate the alignment procedure for different operational scenarios using particle tracking simulations to understand the beam loss along the extraction straight as a function of the relative positions of each of the 5 separate ES units. An important aspect of the study was to understand the required alignment tolerance to achieve optimum extraction efficiency for a given configuration of wire-array thicknesses.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF052
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPAF053 |
Optimization of Diffuser (Pre-Scatterer) Configurations for Slow Extraction Loss Reduction at Electrostatic Septa |
830 |
|
- B. Goddard, B. Balhan, J.C.C.M. Borburgh, M.A. Fraser, L.O. Jorat, V. Kain, C. Lolliot, L.S. Stoel, P. Van Trappen, F.M. Velotti
CERN, Geneva, Switzerland
- D. Barna
Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, Budapest, Hungary
- V.P. Nagaslaev
Fermilab, Batavia, Illinois, USA
|
|
|
Uncontrolled beam loss at the electrostatic septum is a performance limit for several existing or planned high power hadron accelerators delivering slow-extracted spills to fixed targets. A passive diffuser, or pre-scatterer, in a suitable configuration has been shown to reduce such beamloss significantly, with the actual gain factor depending on the parameters and details of the extraction process and hardware. In this paper, the optimization of diffuser configurations is investigated for a range of beam energies and extraction conditions, and the sensitivity to the available parameters explored via simulation results. The advantages and limitations of the diffuser are discussed and conclusions drawn concerning the specific case studies of the 8 GeV Fermilab debuncher ring and 400 GeV CERN SPS.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF053
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPAF054 |
Slow Extraction Efficiency Measurements at the CERN SPS |
834 |
|
- M.A. Fraser, K. Cornelis, L.S. Esposito, B. Goddard, V. Kain, F. Roncarolo, L.S. Stoel, F.M. Velotti
CERN, Geneva, Switzerland
|
|
|
The high efficiency of most slow extraction systems makes quantifying the exact amount of beam lost in the process extremely challenging. This is compounded by the lack of time structure in the extracted beam, as is typically required by the high-energy physics experiments, and the difficulty in accurately calibrating D.C. intensity monitors in the extraction line at count rates of ~ 1013 Hz. As a result, it is common for the extraction inefficiency to be measured by calibrating the beam loss signal induced by the slow extraction process itself. In this paper, measurements of the extraction efficiency performed at the CERN Super Proton Synchrotron for the third-integer resonant slow extraction of 400 GeV protons over recent years will be presented and compared to expectation from simulation. The technique employed will be discussed along with its limitations and an outlook towards a future online extraction efficiency monitoring system will be given.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF054
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPAF055 |
Progress Toward a Dynamic Extraction Bump for Slow Extraction in the CERN SPS |
838 |
|
- L.S. Stoel, M. Benedikt, M.A. Fraser, B. Goddard, J. Prieto, F.M. Velotti
CERN, Geneva, Switzerland
|
|
|
The possibility of reducing the angular spread of slow extracted particles with a time-dependent extraction bump at the CERN Super Proton Synchrotron (SPS) is under investigation. In order to create this so-called dynamic bump, two orthogonal knobs were designed to enable independent movements of the beam in position and angle at the upstream end of the electrostatic extraction septum (ES). With the present slow extraction scheme, simulations show that the use of a dynamic bump can reduce the angular spread at the ES by roughly a factor two and reduce beam loss on the ES. A reduction in the angular spread is also a prerequisite to exploit the full potential of other loss reduction techniques being considered for implementation at the SPS, like the active or passive diffusers planned for installation upstream of the ES in 2018. In this paper, the simulated loss reduction with a dynamic bump alone or in combination with other loss reduction techniques will be assessed, the first beam-based tests of the dynamic bump presented, the details of its implementation examined and its potential for future operation at the SPS discussed.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF055
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPAF061 |
Use of a Massless Septum to Increase Slow-Extraction Efficiency |
862 |
|
- K. Brunner, M.A. Fraser, B. Goddard, L.S. Stoel, C. Wiesner
CERN, Geneva, Switzerland
- D. Barna
Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, Budapest, Hungary
|
|
|
The Super Proton Synchrotron (SPS) at CERN provides slow-extracted beam for Fixed Target experiments in the North Area. For the higher extracted beam intensities requested by future experimental proposals, beam-loss induced activation will be one of the limiting factors for the availability of such a facility. In this paper, we present and discuss the concept of using a massless septum magnet to increase the extraction efficiency and decrease losses caused by protons scattering on the electrostatic-septa wires.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF061
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEPMF075 |
Performance Measurements and Analysis of Jitter Like Events for the PS Injection Kicker System |
2549 |
|
- A. Ferrero Colomo, J.C.C.M. Borburgh, L. Ducimetière, L.M.C. Feliciano, V. Forte, M.A. Fraser, T. Kramer, L. Sermeus
CERN, Geneva, Switzerland
|
|
|
In the framework of the LIU project, several modifications have been made to the CERN PS injection kicker system during the winter stop 2016-2017 (EYETS). Current waveform and beam-based measurements were carried out in 2017 to validate the implemented design changes by observing the magnetic field impact on the beam. During these long-term measurements, increased values for the rise and fall times were observed when compared to single shot observations of the current waveform. An unknown source of jitter-like pre-firing in the main switch has been identified, creating an additional challenge to meet the already tight system rise and fall time specifications. This paper briefly describes the efforts made to fine tune the pulse generator after the EYETS, summarises the optimised configuration and analyses the observed jitter events. A new triggering system design is briefly outlined to address the issue.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF075
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEPMG002 |
Beam Dump Facility Target: Design Status and Beam Tests in 2018 |
2604 |
|
- E. Lopez Sola, O. Aberle, P. Avigni, L. Bianchi, J. Busom, M. Calviani, M. Casolino, J.P.C. Espadanal, M.A. Fraser, S. Girod, B. Goddard, D. Grenier, M. Guinchard, C. Heßler, R. Illan Fiastre, R. Jacobsson, M. Lamont, A. Ortega Rolo, B. Riffaud, G. Romagnoli, L. Zuccalli
CERN, Geneva, Switzerland
|
|
|
The Beam Dump Facility (BDF) Project, currently in its design phase, is a proposed general-purpose fixed target facility at CERN, dedicated to the Search for Hidden Particles (SHiP) experiment in its initial phase. At the core of the installation resides the target/dump assembly, whose aim is to fully absorb the high intensity 400 GeV/c SPS beam and produce charmed mesons. In addition to high thermo-mechanical loads, the most challenging aspects of the proposed installation lie in very high energy and power density deposition that are reached during operation. In order to validate the design of the BDF target, a scaled prototype is going to be tested during 2018 in the North Area at CERN, upstream the existing beryllium primary targets. The prototype testing under representative beam scenarios will allow having an insight of the material response in an unprecedented regime. Online monitoring and an extensive Post Irradiation Experimental (PIE) campaign are foreseen. The current contribution will detail the design and handling aspects of the innovative Target Complex as well as the design of the BDF target/dump core and the design and construction of the prototype target assembly.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMG002
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|