Paper |
Title |
Page |
MOPML021 |
Shorter Treatment Time by Intensity Modulation with a Betatron Core Extraction |
439 |
|
- M. G. Pullia, E. Bressi, G.M.A. Calvi, M. Donetti, L. Falbo, S. Foglio, V. Lante, A. Parravicini, C. Priano, E. Rojatti, S. Savazzi, C. Viviani
CNAO Foundation, Milan, Italy
|
|
|
The CNAO (National Center for Oncological Hadrontherapy) main accelerator is a synchrotron capable to accelerate carbon ions up to 400 MeV/u and protons up to 250 MeV. Three treatment rooms are available and are equipped with horizontal beam lines; one of the treatment rooms also features a vertical treatment line to allow additional treatment ports. All of the beamlines are equipped with an active beam scanning system for dose delivery. With such a dose distribution technique, particles are sent to different depths by changing the energy from the synchrotron and are moved transversally by means of two scanning magnets. The number of particles to be deposited in each position varies strongly within the same iso-energetic layer. Part of the dose needed in a given position is in fact delivered by particles directed to deeper layers. In order to maintain the required precision on the number of particles delivered to each spot, the intensity is reduced when spots that require low number of particles are present in a layer. A method to shorten the irradiation time based on variable intensity within the same layer is presented that works also with a betatron based extraction scheme.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML021
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUZGBF3 |
Betatron Core Slow Extraction at CNAO |
1237 |
|
- L. Falbo, E. Bressi, S. Foglio, C. Priano
CNAO Foundation, Pavia, Italy
|
|
|
CNAO is the only Italian hadrontherapy facility able to treat tumors with beams of protons and carbon ions. Beam is extracted with a momentum selection scheme in which beam enters the third order resonance driven by a betatron core. When irradiating a tumor, it is thought as divided in the longitudinal plane in several slices while each slice is divided in the transverse plane in several spots called voxels. Considering the dose uniformity that can be obtained during extraction, the machine must extract an average intensity related to the voxel that requires less dose. Therefore during a treatment, for some slices, a technique is needed to lower the extracted beam intensity with respect to the nominal one. A way to guarantee the correct average intensity according to the treatment planning requirements, is to introduce a mechanical filter (a degrader) that reduces the intensity of the accelerated particles. However this method used in the first treatments at CNAO showed some disadvantages and it has been replaced by what has been called the "dynamic betatron" method. The paper shows the implementations and the advantages of this method in the CNAO treatments.
|
|
|
Slides TUZGBF3 [2.146 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-TUZGBF3
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|