Paper | Title | Page |
---|---|---|
MOPMK015 | Development of a Bunched-Beam Electron Cooler for the Jefferson Lab Electron-Ion Collider | 382 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S.DOE Contract No. DE-AC05-06OR23177. Jefferson Lab is in the process of designing an electron-ion collider with unprecedented luminosity at a 65 GeV center-of-mass energy. This luminosity relies on ion cooling in both the booster and the storage ring of the accelerator complex. The cooling in the booster will use a conventional DC cooler similar to the one at COSY. The high-energy storage ring, operating at a momentum of up to 100 GeV/nucleon, requires novel use of bunched-beam cooling. We will present a new design for a Circulator Cooler Ring for bunched-beam electron cooling. This requires the generation and transport of very high-charge magnetized bunches, acceleration of the bunches in an energy recovery linac, and transfer of these bunches to a circulating ring that passes the bunches 11 times through the proton or ion beam inside cooling solenoids. This design requires the suppression of the effects of space charge and coherent synchrotron radiation using shielding and RF compensation. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMK015 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUYGBE2 | CBETA, the 4-Turn ERL with SRF and Single Return Loop | 635 |
|
||
Funding: Supported by NSF award DMR-0807731, DOE grant DE-AC02-76SF00515, and NYSERDA. A collaboration between Cornell University and Brookhaven National Laboratory has designed and is constructing CBETA, the Cornell-BNL ERL Test Accelerator on the Cornell campus. The ERL technology that has been prototyped at Cornell for many years is being used for this new accelerator, including a DC electron source and an SRF injector Linac with world-record current and normalized brightness in a bunch train, a high-current linac cryomodule optimized for ERLs, a high-power beam stop, and several diagnostics tools for high-current and high-brightness beams. BNL has designed multi-turn ERLs for several purpose, dominantly for the electron beam of eRHIC, its Electron Ion Collider (EIC) project and for the associated fast electron cooling system. Also in JLEIC, the EIC designed at JLAB, an ERL is envisioned to be used for electron cooling. The number of transport lines in an ERL is minimized by using return arcs that are comprised of a Fixed Field Alternating-gradient (FFA) design. This technique will be tested in CBETA, which has a single return for the 4-beam energies with strongly-focusing permanent magnets of Halbach type. The high-brightness beam with 150~MeV and up to 40~mA will have applications beyond accelerator research, in industry, in nuclear physics, and in X-ray science. Low current electron beam has already been sent through the most relevant parts of CBETA, from the DC gun through both cryomodules, through one of the 8 similar separator lines, and through one of the 27 similar FFA structures. Further construction is envisioned to lead to a commissioning start for the full system early in 2019. |
||
![]() |
Slides TUYGBE2 [17.343 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUYGBE2 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEYGBE2 | Applications of Caustic Methods to Longitudinal Phase Space Manipulation | 1790 |
|
||
Longitudinal phase space management is a key feature of recirculating machines. Careful consideration of the longitudinal matching is required not only in order to ensure a high peak current, low energy spread bunch is delivered to the FEL but also to support the deceleration and energy recovery of the spent beam. In a similar manner, longitudinal phase space manipulation can be utilised for pulse shaping in bunch compression, to minimise the influence of CSR-induced emittance growth. In this paper, we present a method for longitudinal phase space matching based upon the avoidance of electron trajectory caustics. Through considering the conditions under which caustics will form, we generate exclusion plots identifying the viable parameter space at numerous positions through beam acceleration and energy recovery. The result is a method for selecting the linear momentum compaction and the higher-order momentum compaction to satisfy the non-caustic condition whilst achieving the bunch compression or lengthening as required. | ||
![]() |
Slides WEYGBE2 [6.292 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEYGBE2 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMK105 | PERLE - Lattice Design and Beam Dynamics Studies | 4556 |
|
||
Funding: Work has been authored by Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177 with the U.S. Department of Energy. PERLE (Powerful ERL for Experiments) is a novel ERL test facility, initially proposed to validate choices for a 60 GeV ERL foreseen in the design of the LHeC and the FCC-eh. Its main thrust is to probe high current, CW, multi-pass operation with superconducting cavities at 802 MHz (and perhaps testing other frequencies of interest). With very high virtual beam power (~ 10 MW), PERLE offers an opportunity for controllable study of every beam dynamic effect of interest in the next generation of ERL design; becoming a ‘stepping stone' between present state-of-art 1 MW ERLs and future 100 MW scale applications. PERLE design features Flexible Momentum Compaction lattice architecture for six vertically stacked return arcs and a high-current, 6 MeV, photo-injector. With only one pair of 4 cavity cryomodules, 400 MeV beam energy can be reached in 3 re-circulation passes, with beam currents in excess of 15 mA. The beam is decelerated in 3 consecutive passes back to the injection energy, transferring virtually stored energy back to the RF. This unique facility will serve as a test-bed for high current ERL technologies, as well as a user facility in low energy electron and photon physics. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK105 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMK106 | Architectural Considerations for Recirculated and Energy-Recovered Hard XFEL Drivers | 4560 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. A confluence of events motivates discussion of design options for hard XFEL driver accelerators. Firstly, multiple superconducting radio-frequency (SRF) driven systems are now online (European XFEL), in construction (LCLS-II), or in design (MARIE); these provide increasing evidence of the transformational potential they offer for fundamental science with its concomitant benefits. Secondly, operation of 12 GeV CEBAF* validates use of recirculation in high energy SRF linacs. Thirdly, advances in the analysis and control of effects such as coherent synchrotron radiation (CSR) and the microbunching instability (uBI) have been recently achieved. Collectively, these developments offer insights providing extended facility science reach, reduced costs, multiplicity (i.e., support of numerous FELs operating over a range of wavelengths), and enhanced scalability and upgradability (to higher powers and energies). We will discuss the relationship amongst the various threads, and indicate how they inform design choices for the system architecture of an option for the UK-XFEL** - that of a staged multi-user X-ray FEL and nuclear physics facility based on a multi-pass recirculating SRF CW linac. *M. Spata, "12 GeV CEBAF Initial Operations and Challenges", these proceedings. **P. Williams et al., Proc. FLS2018, Shanghai, China (March 2018). |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK106 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |