Author: Dimopoulou, C.
Paper Title Page
THYGBF3 Challenges of FAIR Phase 0 2947
 
  • M. Bai, A. Adonin, S. Appel, R. Bär, M.C. Bellachioma, U. Blell, C. Dimopoulou, G. Franchetti, O. Geithner, P. Gerhard, L. Groening, F. Herfurth, R. Hess, R. Hollinger, H.C. Hüther, H. Klingbeil, A. Krämer, S.A. Litvinov, F. Maimone, D. Ondreka, N. Pyka, S. Reimann, A. Reiter, M. Sapinski, B. Schlitt, G. Schreiber, M. Schwickert, D. Severin, R. Singh, P.J. Spiller, J. Stadlmann, M. Steck, R.J. Steinhagen, K. Tinschert, M. Vossberg, G. Walter, U. Weinrich
    GSI, Darmstadt, Germany
 
  After two-year's shutdown, the GSI accelerators plus the latest addition of storage ring CRYRING, will be back into operation in 2018 as the FAIR phase 0 with the goal to fulfill the needs of scientific community and the FAIR accelerators and detector development. Even though GSI has been well known for its operation of a variety of ion beams ranging from proton up to uranium for multi research areas such as nuclear physics, astrophysics, biophysics, material science, the upcoming beam time faces a number of challenges in re-commissioning its existing circular accelerators with brand new control system and upgrade of beam instrumentations, as well as in rising failures of dated components and systems. The cycling synchrotron SIS18 has been undergoing a set of upgrade measures for fulfilling future FAIR operation, among which many measures will also be commissioned during the upcoming beam time. This paper presents the highlights of the challenges such as re-establishing the high intensity heavy ion operation as well as parallel operation mode for serving multi users. The status of preparation including commissioning results will also be reported.  
slides icon Slides THYGBF3 [2.948 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THYGBF3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF077 Ion-optical Measurements at CRYRING@ESR during Commissioning 3161
 
  • O. Geithner, Z. Andelkovic, M. Bai, A. Bräuning-Demian, V. Chetvertkova, O. Chorniy, C. Dimopoulou, W. Geithner, O.E. Gorda, F. Herfurth, M. Lestinsky, S.A. Litvinov, S. Reimann, A. Reiter, M. Sapinski, R. Singh, T. Stöhlker, G. Vorobjev, U. Weinrich
    GSI, Darmstadt, Germany
  • A. Källberg
    Stockholm University, Stockholm, Sweden
 
  CRYRING@ESR is a heavy ion storage ring, which can cool and decelerate highly charged ions down to a few 100 keV/u. It has been relocated from Sweden to GSI, downstream of the experimental storage ring (ESR), within the FAIR project. The ring will be used as a test facility for FAIR technologies as well as for physics experiments with slow exotic ion beams for several FAIR collaborations: SPARC, BioMat, FLAIR and NUSTAR. CRYRING@ESR is in its commissioning phase since summer 2016. Several ion-optical measurements such as tunes, tune diagram, dispersion, chromaticity and orbit response matrix were performed at the ring. The measurements will be used for several purposes such as improvement of the theoretical model, closed orbit control and correction of unacceptable misalignments, calibration coefficients and field errors.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF078 Expected Performance of the Stochastic Cooling and RF System in the Collector Ring 3165
 
  • O.E. Gorda, C. Dimopoulou, A. Dolinskyy
    GSI, Darmstadt, Germany
  • T. Katayama
    Nihon University, Narashino, Chiba, Japan
 
  The Collector Ring is designed for stochastic cooling of antiprotons or radioactive ions at FAIR. Simulations of the cooling process in combination with the required RF beam manipulations have been done taking into account the improved and recently fixed ion-optics. The measured RF properties of the first of series debuncher system have been considered to evaluate the performance of the bunch rotation, de-bunching and re-bunching process within the planned CR operation cycle. The expected beam parameters and matching at extraction to the HESR storage ring are discussed in this paper. The latest hardware developments of the stochastic cooling system components are also presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF078  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)