Author: Deng, H.X.
Paper Title Page
THPMK053 Simulation for LCLS-II Hard X-ray Self Seeding Scheme 4406
 
  • C. Yang, Y. Feng, J. Krzywinski, T.O. Raubenheimer, C.-Y. Tsai, J. Wu, M. Yoon, G. Zhou
    SLAC, Menlo Park, California, USA
  • H.X. Deng
    SINAP, Shanghai, People's Republic of China
  • D.H. He
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  • Y. Hong, B. Yang
    University of Texas at Arlington, Arlington, USA
  • X.F. Wang
    CIAE, Beijing, People's Republic of China
  • M. Yoon
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • G. Zhou
    IHEP, Beijing, People's Republic of China
 
  Funding: The work was supported by the US Department of Energy (DOE) under contract DE-AC02-76SF00515 and the US DOE Office of Science Early Career Research Program grant FWP-2013-SLAC-100164.
Typical SASE FELs have poor temporal coherence because of starting from shot noise. Self-seeding scheme is an approach to improve the longitudinal coherence. The single crystal monochromator self-seeding has been in successful operation in LCLS. For the high repetition rate LCLS-II machine, for damage consideration, it was initially proposed to have a two-stage self-seeding scheme, yet we have found the two-stage self-seeding scheme has no advantage over one-stage self-seeding scheme. In this paper, we investigate the optimal self-seeding configuration of LCLS-II for different photon energies, and present a comparison between one-stage and two-stage self-seeding scheme of LCLS-II.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK055 Self Seeding Scheme for LCLS-II-HE 4414
 
  • C. Yang, Y. Feng, J. Krzywinski, T.O. Raubenheimer, C.-Y. Tsai, J. Wu, M. Yoon, G. Zhou
    SLAC, Menlo Park, California, USA
  • H.X. Deng, X.F. Wang
    SINAP, Shanghai, People's Republic of China
  • D.H. He
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  • Y. Hong, B. Yang
    University of Texas at Arlington, Arlington, USA
  • M. Yoon
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • G. Zhou
    IHEP, Beijing, People's Republic of China
 
  Funding: The work was supported by the US Department of Energy (DOE) under contract DE-AC02-76SF00515 and the US DOE Office of Science Early Career Research Program grant FWP-2013-SLAC-100164.
Self-seeding is a reliable approach to generate fully coherent FEL pulses. Hard X-ray self-seeding can be realized by using a single crystal in Bragg transmission geometry. However, for a high repetition rate machine, the heat load on the crystal may become an issue. In this paper, we will study the facility performance of LCLS-II-HE by numerical simulations, and discuss the heat load and optimal undulator baseline configuration of LCLS-II-HE self-seeding scheme, and study the emittance tolerance of the LCLS-II-HE.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK068 High degree circular polarization at x-ray self-seeding FELs with crossed-planar undulators 4453
 
  • K. Li, H.X. Deng, Z.F. Gao, B. Liu, D. Wang
    SINAP, Shanghai, People's Republic of China
 
  Funding: Work was supported by the National Natural Science Foundation of China (11775293), the National Key Research and Development Program of China (2016YFA0401900).
The crossed undulator configuration for a high-gain free-electron laser (FEL) is well-known for the ability of versatile polarization control. However, the degree of polarization is very sensitive to power and phase between the two stages of crossed undulators. In this poster, we introduce the generation of high degree circular polarization hard x-ray FEL with crossed-planar undulator seeded by self-seeding. The reverse taper and taper undulator technology are employed for improving its performance. With the combination of high degree (>95%) circular polarization and flexibility of polarization switching, this scheme might be useful for some scientific research in the future.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK069 Design of the Beam Switchyard of a Soft X-ray FEL User Facility in Shanghai 4456
 
  • S. Chen, H.X. Deng, C. Feng, B. Liu, D. Wang, R. Wang
    SINAP, Shanghai, People's Republic of China
 
  A soft X-ray FEL user facility, which is based on the existing test facility located in the Zhangjiang Campus of SINAP, is under construction. Two undulator lines will be installed parallelly in the undulator hall and their electron beams are served by a 1.5 GeV linac. For simultaneous operation of the two undulator lines, a beam distribution system should be used to connect the linac and the undulator lines. In this paper, the physics design of this beam distribution system will be presented and also the beam dynamic issues will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)