Author: De Silva, S.U.
Paper Title Page
THPAK070 Coupled Bunch Instability from JLEIC Crab Cavity Higher Order Modes 3392
SUSPF079   use link to see paper's listing under its alternate paper code  
 
  • S.I. Sosa Guitron, S.U. De Silva, J.R. Delayen, H. Park
    ODU, Norfolk, Virginia, USA
  • R. Li, V.S. Morozov, H. Park
    JLab, Newport News, Virginia, USA
 
  Particle bunches traveling in a ring can excite wakefields inside any radio-frequency element present. These electromagnetic modes can resonate long enough and interact with subsequent passing bunches. A coherent oscillation between bunches can quickly become an instability and needs to be addressed. The Jefferson Lab electron ion collider has a large 50 mrad crossing angle and thus relies on bunch crabbing to achieve high luminosity. Bunch crabbing is done with compact superconducting rf dipole cavities. We study coupled bunch oscillations driven by the higher order modes of multicell RFD crab cavities under study for JLEIC, we calculate the instability growth time assuming a symmetric beam spectrum, identify the HOMs driving the instability and discuss mitigation measures.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL067 Room Temperature Measurements of Higher Order Modes for the SPS Prototype RF-Dipole Crabbing Cavity 3805
 
  • S.U. De Silva, J.R. Delayen, H. Park
    ODU, Norfolk, Virginia, USA
  • P. Berrutti
    Fermilab, Batavia, Illinois, USA
  • N.A. Huque, H. Park
    JLab, Newport News, Virginia, USA
 
  LHC High Luminosity Upgrade will be developing two local crabbing systems to increase the luminosity of the colliding bunches at the ATLAS and CMS experiments. One of the crabbing systems uses the rf-dipole cavity design that will be crabbing the beam in the horizontal plane. The fully integrated crabbing cavity has two higher order mode couplers in damping those excited modes. Currently two sets of HOM couplers have been fabricated at Jefferson Lab for prototyping and testing with the LARP crabbing cavities. This paper presents the measurements of the higher order modes with the prototype HOM couplers carried out at room temperature.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)