Author: De Maria, R.
Paper Title Page
MOPMF041 Refining the HL-LHC Operational Settings with Inputs From Dynamic Aperture Simulations: A Progress Report 188
 
  • N. Karastathis, R. De Maria, S.D. Fartoukh, Y. Papaphilippou, D. Pellegrini
    CERN, Geneva, Switzerland
 
  Recent Dynamic Aperture (DA) simulations aimed at providing guidance for the latest updates of the operational scenario for the High Luminosity upgrade of the LHC. The impact of the increased chromaticity and octupole current has been assessed considering the latest updates of the optics. Additional means to improve the lifetime, such as tune optimization, have been identified and deployed. We also briefly discuss the impact of delivering high luminosity to the LHCb experiment.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF039 IP Orbit Correction Update for HL-LHC 3048
 
  • D. Gamba, R. De Maria
    CERN, Geneva, Switzerland
 
  Funding: Research supported by the HL-LHC project.
The HL-LHC design foresees a substantial modification of the LHC layout next to the low beta Interaction Points (IPs), namely IP1 and IP5. The inner triplets will be replaced by larger aperture ones to achieve lower beta at the IPs and crab cavities (CCs) will be installed. This will add new constraints to the orbit control, which required a careful choice of location and strength of the new orbit correctors to be installed in the area. The new orbit correction system will need to correct for the unavoidable imperfections, but also provide the necessary flexibility for implementing and optimising the crossing scheme. Detailed studies of the HL-LHC layout versions HLLHCV1.0 and HLLHCV1.1 were already performed. This paper is the continuation of these works and is based on the latest layout HLLHCV1.3. A simplification of the previous analysis is proposed that helps to identify the dominant imperfections. The expected performance and tolerances of the present layout are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK004 Accurate and Efficient Tracking in Electromagnetic Quadrupoles 3207
 
  • T. Pugnat, B. Dalena, A. Simona
    CEA/IRFU, Gif-sur-Yvette, France
  • L. Bonaventura
    Politecnico di Milano, Milano, Italy
  • R. De Maria, J. Molson
    CERN, Geneva, Switzerland
 
  Accelerator physics needs advanced modeling and simulation techniques, in particular for beam stability studies. A deeper understanding of the effects of magnetic fields nonlinearities will greatly help in the improvement of future colliders design and performance. This paper presents a study of quadrupole tracking using realistic field maps and measured or simulated longitudinal harmonics. The main goal is to describe the effect of the longitudinal dependence of high order non-homogeneity of the field in the case of the HL-LHC inner triplet.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)