Author: Coupard, J.
Paper Title Page
MOPMF044 New Coordination Tools to Prepare Programmed Stops in the LHC and its Injectors 200
 
  • S. Chemli, M. Bernardini, T.W. Birtwistle, A. Bolognesi, B. Brito Da Palma, S.E. Bustamante, J. Coupard, K. Foraz, E. Kleszcz, N. Kotsolakos, T. Krastev, P. A. Kulig, Y. Muttoni, B. Nicquevert, L. Pater, A. Patrascoiu, S. Petit, C. Rauser, A. Wardzinska
    CERN, Geneva, Switzerland
 
  The LHC and its Injectors are submitted to an overall lifecycle of three to four years of physics delivery to Experiments with a two-year long stop, also known as Long Shutdown (LS). The years of physics delivery are ended by a programmed stop for the immediate preventive and corrective maintenance, also known as (Extended)-Year-End Technical Stop - (E)YETS. This regular cycle is to be addressed in parallel with other projects: the upgrade projects to the accelerator complex of the LHC (High-Luminosity project) and to its Injectors (LHC Injectors Upgrade), and the "standard" consolidation tasks. This paper describes the way the programmed stops coordination group prepares the activities to take place during the stop with a set of new tools and processes that ease the communication between the stakeholders of the coordination.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF044 Schedule Evolution of the Linac4 Installation During the Lifetime of the Linac4 Project and Connection Forecast 794
 
  • J. Coupard, A. Berjillos, J.-P. Corso, K. Foraz, B. Nicquevert, E. Paulat, M. Vretenar
    CERN, Geneva, Switzerland
 
  The new CERN linear accelerator Linac4 started the installation phase in 2010 after the delivery of the new building and tunnel by the civil engineering and was inaugurated six years later. It will be connected to the CERN accelerators chain and replace the current proton linear accelerator, Linac2, during the second long shut-down (LS2) of the Large Hadron Collider (LHC) in 2019. This paper aims to summarize the schedule evolution through the different phases of installation, from general services to machine installation, highlight the key factors that contributed to drive the schedule (safety, logistics and integration) and describe the coordination study of the future connection (integration, schedule, logistics, constraints and priorities).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)